05 Continuity and Differentiability

Exercise 02

Question:

Differentiate the function with respect to xcosx^3.sin^2(x^5)

Answer:

Answer:

Step 1: Differentiate the function with respect to x:

f’(x) = cosx^3.sin^2(x^5)

Step 2: Differentiate the function with respect to cosx^3:

f’(cosx^3) = sin^2(x^5)

Step 3: Differentiate the function with respect to sin^2(x^5):

f’(sin^2(x^5)) = 2sin(x^5)cos(x^5)

Question:

Differentiate the function with respect to x 2√cot(x^2)

Answer:

Step 1: Take the derivative of the inside function, cot(x^2), with respect to x.

Step 2: Apply the chain rule to the outside function, 2√, with respect to x.

Step 3: Multiply the derivatives of the inside and outside functions together.

Answer: -4x√cot(x^2) csc^2(x^2)

Question:

Differentiate the function with respect to x sec(tan(√x))

Answer:

Step 1: Rewrite the function as sec(arctan(√x))

Step 2: Use the Chain Rule and differentiate with respect to x:

d/dx sec(arctan(√x)) = sec(arctan(√x))sec2(arctan(√x))(1/2)*(1/x^(1/2))

Step 3: Simplify the expression:

d/dx sec(arctan(√x)) = (1/2)*sec(arctan(√x))*sec2(arctan(√x))*x^(-1/2)

Question:

Differentiate the function with respect to x sin(ax+b)

Answer:

  1. Differentiate the function: d/dx[sin(ax+b)]

  2. Use the chain rule: d/dx[sin(ax+b)] = d/du[sin(u)] * d/dx[ax+b]

  3. d/du[sin(u)] = cos(u)

  4. d/dx[ax+b] = a

  5. Substitute: d/dx[sin(ax+b)] = a*cos(ax+b)

Question:

Differentiate the function with respect to x cos(√x)

Answer:

Given, f(x) = cos(√x)

Step 1: Take the derivative of f(x) with respect to x.

f’(x) = -sin(√x) × (1/2√x)

Step 2: Substitute the value of f’(x) in the given equation.

Differentiate the function with respect to x cos(√x) = -sin(√x) × (1/2√x)

Question:

Differentiate the function with respect to x sin(ax+b)/cos(cx+d)

Answer:

  1. (a*cos(ax+b)*cos(cx+d)-sin(ax+b)csin(cx+d))/(cos(cx+d))^2

  2. (a*cos(ax+b)*cos(cx+d)-sin(ax+b)csin(cx+d))/(cos(cx+d))^2 * (dcos(cx+d)-csin(cx+d))

  3. (a*cos(ax+b)*dcos(cx+d)-sin(ax+b)ccos(cx+d)-asin(ax+b)csin(cx+d)+csin(ax+b)*sin(cx+d))/(cos(cx+d))^3

Question:

Differentiate the function with respect to x sin(x^2+5)

Answer:

  1. Differentiate the inside of the function with respect to x: (2x)

  2. Multiply the result by the outside of the function: (2x)sin(x^2+5)

  3. Simplify: 2xcos(x^2+5)

Question:

Differentiate the function with respect to x cos(sinx)

Answer:

Step 1: Take the derivative of cos(sinx) with respect to x.

Step 2: Use the Chain Rule:

d/dx[cos(sinx)] = -sin(sinx) * d/dx[sinx]

Step 3: Take the derivative of sinx with respect to x.

d/dx[sinx] = cosx