05 కొనసాగింపు మరియు భిన్నత్వం

వ్యాయామం 02

Question:

Differentiate the function with respect to xcosx^3.sin^2(x^5)

Answer:

Answer:

Step 1: Differentiate the function with respect to x:

f’(x) = cosx^3.sin^2(x^5)

Step 2: Differentiate the function with respect to cosx^3:

f’(cosx^3) = sin^2(x^5)

Step 3: Differentiate the function with respect to sin^2(x^5):

f’(sin^2(x^5)) = 2sin(x^5)cos(x^5)

Question:

Differentiate the function with respect to x 2√cot(x^2)

Answer:

Step 1: Take the derivative of the inside function, cot(x^2), with respect to x.

Step 2: Apply the chain rule to the outside function, 2√, with respect to x.

Step 3: Multiply the derivatives of the inside and outside functions together.

Answer: -4x√cot(x^2) csc^2(x^2)

Question:

Differentiate the function with respect to x sec(tan(√x))

Answer:

Step 1: Rewrite the function as sec(arctan(√x))

Step 2: Use the Chain Rule and differentiate with respect to x:

d/dx sec(arctan(√x)) = sec(arctan(√x))sec2(arctan(√x))(1/2)*(1/x^(1/2))

Step 3: Simplify the expression:

d/dx sec(arctan(√x)) = (1/2)*sec(arctan(√x))*sec2(arctan(√x))*x^(-1/2)

Question:

Differentiate the function with respect to x sin(ax+b)

Answer:

  1. Differentiate the function: d/dx[sin(ax+b)]

  2. Use the chain rule: d/dx[sin(ax+b)] = d/du[sin(u)] * d/dx[ax+b]

  3. d/du[sin(u)] = cos(u)

  4. d/dx[ax+b] = a

  5. Substitute: d/dx[sin(ax+b)] = a*cos(ax+b)

Question:

Differentiate the function with respect to x cos(√x)

Answer:

Given, f(x) = cos(√x)

Step 1: Take the derivative of f(x) with respect to x.

f’(x) = -sin(√x) × (1/2√x)

Step 2: Substitute the value of f’(x) in the given equation.

Differentiate the function with respect to x cos(√x) = -sin(√x) × (1/2√x)

Question:

Differentiate the function with respect to x sin(ax+b)/cos(cx+d)

Answer:

  1. (a*cos(ax+b)*cos(cx+d)-sin(ax+b)csin(cx+d))/(cos(cx+d))^2

  2. (a*cos(ax+b)*cos(cx+d)-sin(ax+b)csin(cx+d))/(cos(cx+d))^2 * (dcos(cx+d)-csin(cx+d))

  3. (a*cos(ax+b)*dcos(cx+d)-sin(ax+b)ccos(cx+d)-asin(ax+b)csin(cx+d)+csin(ax+b)*sin(cx+d))/(cos(cx+d))^3

Question:

Differentiate the function with respect to x sin(x^2+5)

Answer:

  1. Differentiate the inside of the function with respect to x: (2x)

  2. Multiply the result by the outside of the function: (2x)sin(x^2+5)

  3. Simplify: 2xcos(x^2+5)

Question:

Differentiate the function with respect to x cos(sinx)

Answer:

Step 1: Take the derivative of cos(sinx) with respect to x.

Step 2: Use the Chain Rule:

d/dx[cos(sinx)] = -sin(sinx) * d/dx[sinx]

Step 3: Take the derivative of sinx with respect to x.

d/dx[sinx] = cosx

JEE స్టడీ మెటీరియల్ (గణితం)

01 సంబంధాలు మరియు విధులు

02 విలోమ త్రికోణమితి విధులు

03 మాత్రికలు

04 నిర్ణాయకాలు

05 కొనసాగింపు మరియు భిన్నత్వం

06 డెరివేటివ్‌ల అప్లికేషన్

07 సమగ్రతలు

08 ఇంటిగ్రల్స్ యొక్క అప్లికేషన్

09 వెక్టర్స్

10 త్రీ డైమెన్షనల్ జ్యామితి

11 లీనియర్ ప్రోగ్రామింగ్

12 సంభావ్యత