Combination Of Capacitors
How are Capacitors connected?
The equivalent capacitance of a combination of capacitors connected to a battery to apply a potential difference (V) and charge the plates (Q) can be defined as the capacitance between two points.
Two frequently used methods of combination are:
- Parallel combination
- Series combination
Related Topics
- Capacitor, Types and Capacitance
- Energy Stored in a Capacitor
Parallel Combination of Capacitors
The potential difference V across each capacitor when they are connected in parallel is the same, however, the charge on C1 and C2 (Q1 and Q2) is different.
The total charge is Q:
Equivalent capacitance between a and b is:
C = C1 + C2
The charge on capacitors is given as:
Series Combination of Capacitors
The magnitude of charge Q on each capacitor is the same when connected in series, however, the potential difference across C1 and C2 is different, i.e., V1 and V2.
Q = C1 V1 = C2 V2
The total potential difference across combination is:
V = V1 + V2
The ratio of Q to V, denoted as C, is referred to as the equivalent capacitance between point a and b.
The potential difference across C1 and C2 is V1 and V2 respectively, as follows:
In case of more than two capacitors, the relation is:
Important Points:
If N identical capacitors of capacitance C are connected in series, then the effective capacitance = C/N
If N identical capacitors of capacitance C are connected in parallel, then the effective capacitance is equal to C multiplied by N
Problems on Combination of Capacitors
Problem 1: Calculate the potential difference across each capacitor when two capacitors of capacitance C1 = 6 μF and C2 = 3 μF are connected in series across a cell of emf 18 V.
- (a) The Equivalent Capacitance
- (b) The potential difference across each capacitor
- (c) The Charge on Each Capacitor
Sol:
(a)
(b)
Q = CeqV
Substituting the values, we obtain
Q = 36 μC = 2 μF × 18 V
V1 = Q/C1 = 36 μC/ 6 μF = 6V
V2 = Q/C2 = 36 μC/ 3 μF = 12 V
The magnitude of charge Q on each capacitor when connected in series will be the same and will equal 36 μC.
Example 2: Find the equivalent capacitance between points A and B.
Answer: The equivalent capacitance between points A and B is 4 μF.
Sol: In the system given, 1 and 3 are in parallel and 5 is connected between A and B. They can be represented as follows:
-
- As 1 and 3 are in parallel, their effective capacitance is 4μF
-
- The effective capacitance of a series circuit with 2.4μF and 2μF is 4/3μF.
-
- The effective capacitance of 3.4/3μF and 2μF in parallel is 10/3μF.
-
- The effective capacitance of a series circuit of 10/3μF and 2μF is 5/4μF.
-
- The combined capacitance of 5/4μF and 2μF in parallel is 13/4μF
Therefore, the equivalent capacitance of the given system is 13/4 μF.
NEET స్టడీ మెటీరియల్ (భౌతికశాస్త్రం)
- గురుత్వాకర్షణ కారణంగా త్వరణం
- కెపాసిటర్ మరియు కెపాసిటెన్స్
- సెంటర్ ఆఫ్ మాస్
- కెపాసిటర్ల కలయిక
- కండక్షన్
- మొమెంటం పరిరక్షణ
- కూలంబ్స్ చట్టం
- స్థితిస్థాపకత
- విద్యుత్ ఛార్జ్
- ఎలక్ట్రిక్ ఫీల్డ్ ఇంటెన్సిటీ
- ఎలక్ట్రిక్ పొటెన్షియల్ ఎనర్జీ
- ఎలెక్ట్రోస్టాటిక్స్
- శక్తి
- కెపాసిటర్లో నిల్వ చేయబడిన శక్తి
- ఈక్విపోటెన్షియల్ సర్ఫేస్
- ఎస్కేప్ మరియు ఆర్బిటల్ వెలాసిటీ
- గాస్ లా
- గురుత్వాకర్షణ
- గురుత్వాకర్షణ క్షేత్ర తీవ్రత
- గ్రావిటేషనల్ పొటెన్షియల్ ఎనర్జీ
- కెప్లర్ యొక్క చట్టాలు
- నిశ్చలస్థితి క్షణం
- ఊపందుకుంటున్నది
- న్యూటన్ శీతలీకరణ చట్టం
- రేడియేషన్
- సింపుల్ హార్మోనిక్ మోషన్
- సాధారణ లోలకం
- శబ్ధ తరంగాలు
- స్ప్రింగ్ మాస్ సిస్టమ్
- స్టీఫన్ బోల్ట్జ్మాన్ లా
- అలల సూపర్పొజిషన్
- యూనిట్లు మరియు కొలతలు
- వేవ్ మోషన్
- వేవ్ ఆప్టిక్స్
- యంగ్స్ డబుల్ స్లిట్ ప్రయోగం