Combination Of Capacitors
How are Capacitors connected?
The equivalent capacitance of a combination of capacitors connected to a battery to apply a potential difference (V) and charge the plates (Q) can be defined as the capacitance between two points.
Two frequently used methods of combination are:
- Parallel combination
- Series combination
Related Topics
- Capacitor, Types and Capacitance
- Energy Stored in a Capacitor
Parallel Combination of Capacitors
The potential difference V across each capacitor when they are connected in parallel is the same, however, the charge on C1 and C2 (Q1 and Q2) is different.
The total charge is Q:
Equivalent capacitance between a and b is:
C = C1 + C2
The charge on capacitors is given as:
Series Combination of Capacitors
The magnitude of charge Q on each capacitor is the same when connected in series, however, the potential difference across C1 and C2 is different, i.e., V1 and V2.
Q = C1 V1 = C2 V2
The total potential difference across combination is:
V = V1 + V2
The ratio of Q to V, denoted as C, is referred to as the equivalent capacitance between point a and b.
The potential difference across C1 and C2 is V1 and V2 respectively, as follows:
In case of more than two capacitors, the relation is:
Important Points:
If N identical capacitors of capacitance C are connected in series, then the effective capacitance = C/N
If N identical capacitors of capacitance C are connected in parallel, then the effective capacitance is equal to C multiplied by N
Problems on Combination of Capacitors
Problem 1: Calculate the potential difference across each capacitor when two capacitors of capacitance C1 = 6 μF and C2 = 3 μF are connected in series across a cell of emf 18 V.
- (a) The Equivalent Capacitance
- (b) The potential difference across each capacitor
- (c) The Charge on Each Capacitor
Sol:
(a)
(b)
Q = CeqV
Substituting the values, we obtain
Q = 36 μC = 2 μF × 18 V
V1 = Q/C1 = 36 μC/ 6 μF = 6V
V2 = Q/C2 = 36 μC/ 3 μF = 12 V
The magnitude of charge Q on each capacitor when connected in series will be the same and will equal 36 μC.
Example 2: Find the equivalent capacitance between points A and B.
Answer: The equivalent capacitance between points A and B is 4 μF.
Sol: In the system given, 1 and 3 are in parallel and 5 is connected between A and B. They can be represented as follows:
-
- As 1 and 3 are in parallel, their effective capacitance is 4μF
-
- The effective capacitance of a series circuit with 2.4μF and 2μF is 4/3μF.
-
- The effective capacitance of 3.4/3μF and 2μF in parallel is 10/3μF.
-
- The effective capacitance of a series circuit of 10/3μF and 2μF is 5/4μF.
-
- The combined capacitance of 5/4μF and 2μF in parallel is 13/4μF
Therefore, the equivalent capacitance of the given system is 13/4 μF.
NEET ਅਧਿਐਨ ਸਮੱਗਰੀ (ਭੌਤਿਕ ਵਿਗਿਆਨ)
- ਗੰਭੀਰਤਾ ਦੇ ਕਾਰਨ ਪ੍ਰਵੇਗ
- ਕੈਪੇਸੀਟਰ ਅਤੇ ਕੈਪੇਸੀਟੈਂਸ
- ਪੁੰਜ ਦਾ ਕੇਂਦਰ
- ਕੈਪਸੀਟਰਾਂ ਦਾ ਸੁਮੇਲ
- ਸੰਚਾਲਨ
- ਮੋਮੈਂਟਮ ਦੀ ਸੰਭਾਲ
- Coulombs ਕਾਨੂੰਨ
- ਲਚਕੀਲੇਪਨ
- ਇਲੈਕਟ੍ਰਿਕ ਚਾਰਜ
- ਇਲੈਕਟ੍ਰਿਕ ਫੀਲਡ ਤੀਬਰਤਾ
- ਇਲੈਕਟ੍ਰਿਕ ਸੰਭਾਵੀ ਊਰਜਾ
- ਇਲੈਕਟ੍ਰੋਸਟੈਟਿਕਸ
- ਊਰਜਾ
- ਕੈਪੀਸੀਟਰ ਵਿੱਚ ਸਟੋਰ ਕੀਤੀ ਊਰਜਾ
- ਸਮਰੂਪ ਸਤਹ
- Escape ਅਤੇ Orbital Velocity
- ਗੌਸ ਕਾਨੂੰਨ
- ਗ੍ਰੈਵੀਟੇਸ਼ਨ
- ਗਰੈਵੀਟੇਸ਼ਨਲ ਫੀਲਡ ਦੀ ਤੀਬਰਤਾ
- ਗਰੈਵੀਟੇਸ਼ਨਲ ਸੰਭਾਵੀ ਐਨਰਜੀ
- ਕੇਪਲਰ ਦੇ ਕਾਨੂੰਨ
- ਜੜਤਾ ਦਾ ਪਲ
- ਮੋਮੈਂਟਮ
- ਨਿਊਟਨ ਦਾ ਕੂਲਿੰਗ ਦਾ ਕਾਨੂੰਨ
- ਰੇਡੀਏਸ਼ਨ
- ਸਧਾਰਨ ਹਾਰਮੋਨਿਕ ਮੋਸ਼ਨ
- ਸਧਾਰਨ ਪੈਂਡੂਲਮ
- ਧੁਨੀ ਤਰੰਗਾਂ
- ਬਸੰਤ ਮਾਸ ਸਿਸਟਮ
- ਸਟੀਫਨ ਬੋਲਟਜ਼ਮੈਨ ਕਾਨੂੰਨ
- ਲਹਿਰਾਂ ਦੀ ਸੁਪਰਪੋਜ਼ੀਸ਼ਨ
- ਇਕਾਈਆਂ ਅਤੇ ਮਾਪ
- ਵੇਵ ਮੋਸ਼ਨ
- ਵੇਵ ਆਪਟਿਕਸ
- ਯੰਗਜ਼ ਡਬਲ ਸਲਿਟ ਪ੍ਰਯੋਗ