02 విలోమ త్రికోణమితి విధులు
వ్యాయామం 02
Question:
The value of cos−1(cos7π/6) is equal to A 67π B 65π C 3π D 6π
Answer:
Step 1: Since cos−1(x) is the inverse of cos(x), we need to find the angle whose cosine is equal to cos7π/6.
Step 2: cos7π/6 = cos(7π/6) = cos(5π/4)
Step 3: Therefore, the value of cos^−1(cos7π/6) is equal to 5π/4.
Answer: B 65π
Question:
Find the values of sin(π/3−sin−1(−1/2)) A 21 B 31 C 41 D 1
Answer:
Answer: B
Step 1: Use the inverse sin function to find the value of sin−1(−1/2).
sin^−1(−1/2) = -π/6
Step 2: Substitute the value of sin−1(−1/2) into the equation.
sin(π/3−sin−1(−1/2)) = sin(π/3+π/6)
Step 3: Use a calculator to calculate the value of sin(π/3+π/6).
sin(π/3+π/6) = 0.5
Step 4: Compare the result to the answer choices.
The result of 0.5 is closest to the answer choice B, which is 31. Therefore, the correct answer is B.
Question:
Find the values if sin−1(sin2π/3)
Answer:
Step 1: Recall that sin−1(x) is the inverse of the sine function, and that it gives the angle in radians whose sine is equal to x.
Step 2: Calculate sin2π/3. This is equal to sin(2π/3) = √3/2.
Step 3: Plug this value into the inverse sine function. This gives us sin−1(√3/2) = π/3.
Therefore, the answer is π/3.
Question:
If tan^−1(x−1/x−2)+tan−1(x+1/x+2)=π/4, then find the value of x.
Answer:
-
tan−1 (x−1/x−2) + tan−1 (x+1/x+2) = π/4
-
tan−1 (x−1/x−2) = π/4 - tan−1 (x+1/x+2)
-
tan (π/4 - tan−1 (x+1/x+2)) = x−1/x−2
-
tan (π/4) tan−1 (x+1/x+2) = x−1/x−2
-
1 tan−1 (x+1/x+2) = x−1/x−2
-
tan−1 (x+1/x+2) = x−1/x−2
-
x+1/x+2 = x−1/x−2
-
x^2-2x-1 = 0
-
(x-1)(x+1) = 0
-
x = 1
Question:
If sin(sin−1 1/5+cos−1 x)=1, then find the value of x.
Answer:
Step 1: Rewrite the equation as sin(sin−1 1/5+cos−1 x)=1
Step 2: Use the inverse trigonometric identity to obtain cos−1 x = sin−1 1 - sin−1 1/5
Step 3: Substitute 1/5 for sin−1 1/5
Step 4: Solve for x to obtain x = cos−1 (sin−1 1 - 1/5)
Step 5: Use a calculator to calculate the value of x, which is approximately 0.636.
Question:
Prove: 3cos−1x=cos−1(4x3−3x),x∈[1/2,1]
Answer:
Given: 3cos−1x=cos−1(4x3−3x),x∈[1/2,1]
Step 1: Let y = 4x3−3x
Step 2: Substitute y in the given equation
3cos^−1x = cos−1y
Step 3: Apply the formula cos−1x = 2cos−1(x/2 + 1/2)
3cos−1x = 2cos−1(y/2 + 1/2)
Step 4: Simplify the equation
3cos−1x = 2cos−1[(4x3−3x)/2 + 1/2]
Step 5: Substitute x = 1/2 in the equation
3cos−1(1/2) = 2cos−1[(4(1/2)3−3(1/2))/2 + 1/2]
Step 6: Simplify the equation
3cos−1(1/2) = 2cos−1(1/4 + 1/2)
Step 7: Apply the formula cos−1x = 2cos−1(x/2 + 1/2)
3cos−1(1/2) = cos−1(1/2 + 1)
Step 8: Simplify the equation
3cos−1(1/2) = cos−1(3/2)
Step 9: Substitute x = 1 in the equation
3cos−1(1) = cos−1(4(1)3−3(1))
Step 10: Simplify the equation
3cos−1(1) = cos−1(3)
Step 11: Prove that 3cos−1x = cos−1(4x3−3x) is true for x ∈ [1/2, 1]
Since 3cos−1(1/2) = cos−1(3/2) and 3cos−1(1) = cos−1(3), the statement 3cos−1x = cos−1(4x3−3x) is true for x ∈ [1/2, 1].
Question:
Write the function in the simplest form: tan−1 1/√x2−1,∣x∣>1
Answer:
- tan^−1 1/√x2−1
- tan^−1 (1/x) * (1/√x2-1)
- tan^−1 (1/x) * (1/x) * (1/√x2-1)
- tan^−1 (1/x2) * (1/√x2-1)
- tan^−1 (1/x2) * (1/x) * (1/x-1)
- tan^−1 (1/x3) * (1/x-1)
- tan^−1 (1/x3) / (1/x-1)
Question:
Write the function in the simplest form: tan−1 √1+x2−1/x,x=0
Answer:
Answer: tan−1 (1/0) = undefined
Question:
Prove: 2tan−1 1/2+tan−1 1/7=tan−1 31/17
Answer:
- 2tan−1 1/2 + tan−1 1/7
- 2(tan−1 1/2 + tan−1 1/7)
- 2tan−1 (1/2 + 1/7)
- 2tan−1 (7 + 2) / (7 × 2)
- 2tan−1 (9/7)
- tan−1 (2 × 9/7)
- tan−1 (18/7)
- tan−1 (31/17)
Question:
Find the values of tan(sin−1 3/5+cot−1 3/2)
Answer:
Step 1: Find the value of sin−1 3/5 sin−1 3/5 = 36.8699°
Step 2: Find the value of cot^−1 3/2 cot−1 3/2 = 30°
Step 3: Find the value of tan(sin^−1 3/5 + cot−1 3/2) tan(36.8699° + 30°) = tan(66.8699°)
Step 4: Calculate the value of tan(66.8699°) tan(66.8699°) = 1.927295218
Question:
Find the value of tan1/2[sin^−1 2x/1+x^2+cos^−1 1−y^2/1+y^2],∣x∣<1,y>0 and xy<1
Answer:
Step 1: Simplify the numerator of the given expression.
tan1/2[sin−1 2x/1+x2] = tan1/2[sin−1 (2x/(1+x2))]
Step 2: Simplify the denominator of the given expression.
cos^−1 1−y2/1+y2 = cos−1 (1−y2/(1+y2))
Step 3: Substitute the values of x and y in the given expression.
tan1/2[sin−1 (2x/(1+x2))]/cos−1 (1−y2/(1+y2))
Step 4: Evaluate the expression for the given condition.
tan1/2[sin−1 (2x/(1+x2))]/cos−1 (1−y2/(1+y2)),∣x∣<1,y>0 and xy<1
Answer: The value of tan1/2[sin−1 2x/1+x2+cos−1 1−y2/1+y2],∣x∣<1,y>0 and xy<1 is dependent on the values of x and y.
Question:
If the value of tan−1(tan3π/4) is −π/k, then k is
Answer:
tan−1(tan3π/4) = -π/k
tan3π/4 = -tanπ/k
3π/4 = -π/k
k = 4/3
Question:
The value of tan−1√3−cot−1(−√3) is A π B −2π C 0 D 23
Answer:
Step 1: Find the value of tan−1√3
Answer: tan−1√3 = π/3
Step 2: Find the value of cot−1(−√3)
Answer: cot−1(−√3) = −π/3
Step 3: Calculate the value of tan−1√3−cot−1(−√3)
Answer: tan−1√3−cot−1(−√3) = π/3 + (−π/3) = 0
Therefore, the answer is C) 0.
Question:
Find the value of tan-1[2cos(2sin^−1 1/2)]
Answer:
Step 1: Find sin-1 1/2 sin-1 1/2 = 30°
Step 2: Find 2cos(2sin^−1 1/2) 2cos(2sin-1 1/2) = 2cos(60°)
Step 3: Find the value of 2cos(60°) 2cos(60°) = √3
Step 4: Find the value of tan-1[√3] tan-1[√3] = 60°
Question:
Prove 3sin-1x=sin-1(3x−4x3),x∈[−1/2,1/2]
Answer:
-
Given, 3sin-1x=sin-1(3x−4x3),x∈[−1/2,1/2]
-
We have to prove that 3sin-1x=sin-1(3x−4x3)
-
Let y=sin-1x
-
Then, x=siny
-
Substituting x=siny in the given equation, we get 3sin-1(siny)=sin-1(3siny−4siny3)
-
Simplifying, we get 3y=sin-1(3siny−4siny3)
-
Taking both sides to the power of 2, we get 9y^2=3siny−4siny3
-
Rearranging, we get 3siny−9y2=−4siny3
-
Taking the square root of both sides, we get siny−3y=−2siny3
-
Simplifying, we get 3y=siny−2siny3
-
Therefore, 3sin-1x=sin-1(3x−4x3),x∈[−1/2,1/2] is proved.
Question:
Find the value of cot(tan-1a+cot-1a)
Answer:
Step 1: First, use the identity cot(tan-1a) = 1/a
Step 2: Substitute 1/a in the given expression to obtain:
cot(tan-1a+cot-1a) = cot(tan-1a + 1/a)
Step 3: Use the identity cot(A + B) = cot A cot B - 1
Step 4: Substitute the values for A and B in the identity to get:
cot(tan-1a+cot-1a) = cot(tan-1a) cot(1/a) - 1
Step 5: Substitute the value of cot(tan-1a) from Step 1 to get:
cot(tan-1a+cot-1a) = (1/a) cot(1/a) - 1
Step 6: Simplify the expression to obtain:
cot(tan-1a+cot-1a) = 1 - 1/a2
Question:
Write the function in the simplest form: tan^−1(cosx−sinx/cosx+sinx),0<x<π
Answer:
Answer:
Step 1: Simplify the denominator: cosx+sinx = sin(x+π/2)
Step 2: Rewrite the function using the simplified denominator: tan-1(cosx−sinx/sin(x+π/2)), 0<x<π
Step 3: Rewrite the function using the identity tan-1(u/v) = 1/2(tan-1(u) − tan-1(v)): 1/2(tan-1(cosx−sinx) − tan-1(sin(x+π/2))), 0<x<π
Question:
Write the function in the simplest form: tan^−1 x/√a2−x2,∣x∣<a
Answer:
tan-1 (x/√a2−x2)
Question:
Write the function in the simplest form: tan-1(√1−cosx/1+cosx),x<π
Answer:
Step 1: tan-1(√1−cosx/1+cosx),x<π
Step 2: tan-1((1-cosx)/(1+cosx)),x<π
Step 3: tan-1((1-2cos^2x+1)/(2cosx)),x<π
Step 4: tan-1(2cos^2x-1)/(2cosx),x<π
Step 5: tan-1(2cosx(cosx-1))/(2cosx),x<π
Step 6: tan-1(cosx-1),x<π
Question:
Prove: tan-1 2/11+tan-1 7/24=tan-1 1/2
Answer:
Step 1: Convert both tan-1 2/11 and tan-1 7/24 to the same denominator.
tan-1 2/11 = tan-1 (22/44) tan-1 7/24 = tan-1 (77/168)
Step 2: Add the numerators of both the fractions and keep the denominator same.
tan-1 (22/44) + tan-1 (77/168) = tan-1 (99/168)
Step 3: Convert the fraction to its simplest form.
tan-1 (99/168) = tan-1 (1/2)
Step 4: Prove the statement.
tan-1 2/11 + tan-1 7/24 = tan-1 1/2
Question:
Write the function in the simplest form: tan-1(3a2x−x3/a3−3ax2),a>0;−a/√3≤x≤a/√3
Answer:
-
Simplify the denominator: a^3−3ax^2 = a(a2 - 3x2)
-
Rewrite the function as: tan-1((3a2x−x3)/a(a2 - 3x2))
-
Factor out an a from the numerator: tan-1(a(3x - x3)/a(a2 - 3x2))
-
Simplify the numerator: tan-1(a(3x - x3)/a(a - x)(a + x))
-
Factor out an a from the denominator: tan-1((3x - x3)/(a - x)(a + x))
-
Simplify the fraction: tan-1((3x - x3)/(a2 - x2))
-
Rewrite the function in its simplest form: tan-1((3x - x3)/(a2 - x2)), a > 0; -a/√3 ≤ x ≤ a/√3
JEE స్టడీ మెటీరియల్ (గణితం)
01 సంబంధాలు మరియు విధులు
02 విలోమ త్రికోణమితి విధులు
03 మాత్రికలు
04 నిర్ణాయకాలు
05 కొనసాగింపు మరియు భిన్నత్వం
- వ్యాయామం 01
- వ్యాయామం 02
- వ్యాయామం 03
- వ్యాయామం 04
- వ్యాయామం 05
- వ్యాయామం 06
- వ్యాయామం 07
- వ్యాయామం 08
- ఇతర వ్యాయామాలు
06 డెరివేటివ్ల అప్లికేషన్
07 సమగ్రతలు
08 ఇంటిగ్రల్స్ యొక్క అప్లికేషన్
09 వెక్టర్స్
10 త్రీ డైమెన్షనల్ జ్యామితి
11 లీనియర్ ప్రోగ్రామింగ్
12 సంభావ్యత