02 व्युत्क्रम त्रिकोणमितीय फलन

अभ्यास 02

Question:

The value of cos−1(cos7π​/6) is equal to A 67π​ B 65π​ C 3π​ D 6π

Answer:

Step 1: Since cos−1(x) is the inverse of cos(x), we need to find the angle whose cosine is equal to cos7π/6.

Step 2: cos7π/6 = cos(7π/6) = cos(5π/4)

Step 3: Therefore, the value of cos^−1(cos7π/6) is equal to 5π/4.

Answer: B 65π

Question:

Find the values of sin(π​/3−sin−1(−1​/2)) A 21​ B 31​ C 41​ D 1

Answer:

Answer: B

Step 1: Use the inverse sin function to find the value of sin−1(−1​/2).

sin^−1(−1​/2) = -π/6

Step 2: Substitute the value of sin−1(−1​/2) into the equation.

sin(π​/3−sin−1(−1​/2)) = sin(π​/3+π/6)

Step 3: Use a calculator to calculate the value of sin(π​/3+π/6).

sin(π​/3+π/6) = 0.5

Step 4: Compare the result to the answer choices.

The result of 0.5 is closest to the answer choice B, which is 31​. Therefore, the correct answer is B.

Question:

Find the values if sin−1(sin2π​/3)

Answer:

Step 1: Recall that sin−1(x) is the inverse of the sine function, and that it gives the angle in radians whose sine is equal to x.

Step 2: Calculate sin2π/3. This is equal to sin(2π/3) = √3/2.

Step 3: Plug this value into the inverse sine function. This gives us sin−1(√3/2) = π/3.

Therefore, the answer is π/3.

Question:

If tan^−1(x−1​/x−2)+tan−1(x+1​/x+2)=π​/4, then find the value of x.

Answer:

  1. tan−1 (x−1/x−2) + tan−1 (x+1/x+2) = π/4

  2. tan−1 (x−1/x−2) = π/4 - tan−1 (x+1/x+2)

  3. tan (π/4 - tan−1 (x+1/x+2)) = x−1/x−2

  4. tan (π/4) tan−1 (x+1/x+2) = x−1/x−2

  5. 1 tan−1 (x+1/x+2) = x−1/x−2

  6. tan−1 (x+1/x+2) = x−1/x−2

  7. x+1/x+2 = x−1/x−2

  8. x^2-2x-1 = 0

  9. (x-1)(x+1) = 0

  10. x = 1

Question:

If sin(sin−1 1​/5+cos−1 x)=1, then find the value of x.

Answer:

Step 1: Rewrite the equation as sin(sin−1 1/5+cos−1 x)=1

Step 2: Use the inverse trigonometric identity to obtain cos−1 x = sin−1 1 - sin−1 1/5

Step 3: Substitute 1/5 for sin−1 1/5

Step 4: Solve for x to obtain x = cos−1 (sin−1 1 - 1/5)

Step 5: Use a calculator to calculate the value of x, which is approximately 0.636.

Question:

Prove: 3cos−1x=cos−1(4x3−3x),x∈[1​/2,1]

Answer:

Given: 3cos−1x=cos−1(4x3−3x),x∈[1​/2,1]

Step 1: Let y = 4x3−3x

Step 2: Substitute y in the given equation

3cos^−1x = cos−1y

Step 3: Apply the formula cos−1x = 2cos−1(x/2 + 1/2)

3cos−1x = 2cos−1(y/2 + 1/2)

Step 4: Simplify the equation

3cos−1x = 2cos−1[(4x3−3x)/2 + 1/2]

Step 5: Substitute x = 1/2 in the equation

3cos−1(1/2) = 2cos−1[(4(1/2)3−3(1/2))/2 + 1/2]

Step 6: Simplify the equation

3cos−1(1/2) = 2cos−1(1/4 + 1/2)

Step 7: Apply the formula cos−1x = 2cos−1(x/2 + 1/2)

3cos−1(1/2) = cos−1(1/2 + 1)

Step 8: Simplify the equation

3cos−1(1/2) = cos−1(3/2)

Step 9: Substitute x = 1 in the equation

3cos−1(1) = cos−1(4(1)3−3(1))

Step 10: Simplify the equation

3cos−1(1) = cos−1(3)

Step 11: Prove that 3cos−1x = cos−1(4x3−3x) is true for x ∈ [1/2, 1]

Since 3cos−1(1/2) = cos−1(3/2) and 3cos−1(1) = cos−1(3), the statement 3cos−1x = cos−1(4x3−3x) is true for x ∈ [1/2, 1].

Question:

Write the function in the simplest form: tan−1 1​/√x2−1,∣x∣>1

Answer:

  1. tan^−1 1/√x2−1
  2. tan^−1 (1/x) * (1/√x2-1)
  3. tan^−1 (1/x) * (1/x) * (1/√x2-1)
  4. tan^−1 (1/x2) * (1/√x2-1)
  5. tan^−1 (1/x2) * (1/x) * (1/x-1)
  6. tan^−1 (1/x3) * (1/x-1)
  7. tan^−1 (1/x3) / (1/x-1)

Question:

Write the function in the simplest form: tan−1 √1+x2−1​/x,x=0

Answer:

Answer: tan−1 (1/0) = undefined

Question:

Prove: 2tan−1 1​/2+tan−1 1​/7=tan−1 31/17

Answer:

  1. 2tan−1 1/2 + tan−1 1/7
  2. 2(tan−1 1/2 + tan−1 1/7)
  3. 2tan−1 (1/2 + 1/7)
  4. 2tan−1 (7 + 2) / (7 × 2)
  5. 2tan−1 (9/7)
  6. tan−1 (2 × 9/7)
  7. tan−1 (18/7)
  8. tan−1 (31/17)

Question:

Find the values of tan(sin−1 3​/5+cot−1 3​/2)

Answer:

Step 1: Find the value of sin−1 3/5 sin−1 3/5 = 36.8699°

Step 2: Find the value of cot^−1 3/2 cot−1 3/2 = 30°

Step 3: Find the value of tan(sin^−1 3/5 + cot−1 3/2) tan(36.8699° + 30°) = tan(66.8699°)

Step 4: Calculate the value of tan(66.8699°) tan(66.8699°) = 1.927295218

Question:

Find the value of tan1​/2[sin^−1 2x​/1+x^2+cos^−1 1−y^2​/1+y^2],∣x∣<1,y>0 and xy<1

Answer:

Step 1: Simplify the numerator of the given expression.

tan1/2[sin−1 2x/1+x2] = tan1/2[sin−1 (2x/(1+x2))]

Step 2: Simplify the denominator of the given expression.

cos^−1 1−y2/1+y2 = cos−1 (1−y2/(1+y2))

Step 3: Substitute the values of x and y in the given expression.

tan1/2[sin−1 (2x/(1+x2))]/cos−1 (1−y2/(1+y2))

Step 4: Evaluate the expression for the given condition.

tan1/2[sin−1 (2x/(1+x2))]/cos−1 (1−y2/(1+y2)),∣x∣<1,y>0 and xy<1

Answer: The value of tan1/2[sin−1 2x/1+x2+cos−1 1−y2/1+y2],∣x∣<1,y>0 and xy<1 is dependent on the values of x and y.

Question:

If the value of tan−1(tan3π​/4) is −π​/k, then k is

Answer:

tan−1(tan3π​/4) = -π​/k

tan3π​/4 = -tanπ​/k

3π​/4 = -π​/k

k = 4/3

Question:

The value of tan−1√3−cot−1(−√3) is A π B −2π​ C 0 D 23

Answer:

Step 1: Find the value of tan−1√3

Answer: tan−1√3 = π/3

Step 2: Find the value of cot−1(−√3)

Answer: cot−1(−√3) = −π/3

Step 3: Calculate the value of tan−1√3−cot−1(−√3)

Answer: tan−1√3−cot−1(−√3) = π/3 + (−π/3) = 0

Therefore, the answer is C) 0.

Question:

Find the value of tan-1[2cos(2sin^−1 1​/2)]

Answer:

Step 1: Find sin-1 1/2 sin-1 1/2 = 30°

Step 2: Find 2cos(2sin^−1 1/2) 2cos(2sin-1 1/2) = 2cos(60°)

Step 3: Find the value of 2cos(60°) 2cos(60°) = √3

Step 4: Find the value of tan-1[√3] tan-1[√3] = 60°

Question:

Prove 3sin-1x=sin-1(3x−4x3),x∈[−1​/2,1​/2]

Answer:

  1. Given, 3sin-1x=sin-1(3x−4x3),x∈[−1/2,1/2]

  2. We have to prove that 3sin-1x=sin-1(3x−4x3)

  3. Let y=sin-1x

  4. Then, x=siny

  5. Substituting x=siny in the given equation, we get 3sin-1(siny)=sin-1(3siny−4siny3)

  6. Simplifying, we get 3y=sin-1(3siny−4siny3)

  7. Taking both sides to the power of 2, we get 9y^2=3siny−4siny3

  8. Rearranging, we get 3siny−9y2=−4siny3

  9. Taking the square root of both sides, we get siny−3y=−2siny3

  10. Simplifying, we get 3y=siny−2siny3

  11. Therefore, 3sin-1x=sin-1(3x−4x3),x∈[−1/2,1/2] is proved.

Question:

Find the value of cot(tan-1a+cot-1a)

Answer:

Step 1: First, use the identity cot(tan-1a) = 1/a

Step 2: Substitute 1/a in the given expression to obtain:

cot(tan-1a+cot-1a) = cot(tan-1a + 1/a)

Step 3: Use the identity cot(A + B) = cot A cot B - 1

Step 4: Substitute the values for A and B in the identity to get:

cot(tan-1a+cot-1a) = cot(tan-1a) cot(1/a) - 1

Step 5: Substitute the value of cot(tan-1a) from Step 1 to get:

cot(tan-1a+cot-1a) = (1/a) cot(1/a) - 1

Step 6: Simplify the expression to obtain:

cot(tan-1a+cot-1a) = 1 - 1/a2

Question:

Write the function in the simplest form: tan^−1(cosx−sinx​/cosx+sinx),0<x<π

Answer:

Answer:

Step 1: Simplify the denominator: cosx+sinx = sin(x+π/2)

Step 2: Rewrite the function using the simplified denominator: tan-1(cosx−sinx/sin(x+π/2)), 0<x<π

Step 3: Rewrite the function using the identity tan-1(u/v) = 1/2(tan-1(u) − tan-1(v)): 1/2(tan-1(cosx−sinx) − tan-1(sin(x+π/2))), 0<x<π

Question:

Write the function in the simplest form: tan^−1 x​/√a2−x2,∣x∣<a

Answer:

tan-1 (x/√a2−x2)

Question:

Write the function in the simplest form: tan-1(√1−cosx​/1+cosx),x<π

Answer:

Step 1: tan-1(√1−cosx​/1+cosx),x<π

Step 2: tan-1((1-cosx)/(1+cosx)),x<π

Step 3: tan-1((1-2cos^2x+1)/(2cosx)),x<π

Step 4: tan-1(2cos^2x-1)/(2cosx),x<π

Step 5: tan-1(2cosx(cosx-1))/(2cosx),x<π

Step 6: tan-1(cosx-1),x<π

Question:

Prove: tan-1 2​/11+tan-1 7​/24=tan-1 1/2

Answer:

Step 1: Convert both tan-1 2/11 and tan-1 7/24 to the same denominator.

tan-1 2/11 = tan-1 (22/44) tan-1 7/24 = tan-1 (77/168)

Step 2: Add the numerators of both the fractions and keep the denominator same.

tan-1 (22/44) + tan-1 (77/168) = tan-1 (99/168)

Step 3: Convert the fraction to its simplest form.

tan-1 (99/168) = tan-1 (1/2)

Step 4: Prove the statement.

tan-1 2/11 + tan-1 7/24 = tan-1 1/2

Question:

Write the function in the simplest form: tan-1(3a2x−x3/a3−3ax2),a>0;−a​/√3≤x≤a/√3

Answer:

  1. Simplify the denominator: a^3−3ax^2 = a(a2 - 3x2)

  2. Rewrite the function as: tan-1((3a2x−x3)/a(a2 - 3x2))

  3. Factor out an a from the numerator: tan-1(a(3x - x3)/a(a2 - 3x2))

  4. Simplify the numerator: tan-1(a(3x - x3)/a(a - x)(a + x))

  5. Factor out an a from the denominator: tan-1((3x - x3)/(a - x)(a + x))

  6. Simplify the fraction: tan-1((3x - x3)/(a2 - x2))

  7. Rewrite the function in its simplest form: tan-1((3x - x3)/(a2 - x2)), a > 0; -a/√3 ≤ x ≤ a/√3

जेईई अध्ययन सामग्री (गणित)

01 संबंध एवं फलन

02 व्युत्क्रम त्रिकोणमितीय फलन

03 आव्यूह

04 सारणिक

05 सांत्यता और अवकलनीयता

06 अवकलज का अनुप्रयोग

07 समाकलन

08 समाकलन का अनुप्रयोग

09 वैक्टर

10 त्रिविमीय ज्यामिति का परिचय

11 रैखिक प्रोग्रामिंग

12 प्रायिकता