15 గణాంకాలు

వ్యాయామం 02

Question:

Find the mean and variance for the data 6,7,10,12,13,4,8,12

Answer:

Mean:

Step 1: Add all of the data points together: 6 + 7 + 10 + 12 + 13 + 4 + 8 + 12 = 72

Step 2: Divide the sum by the number of data points: 72 ÷ 8 = 9

Therefore, the mean is 9.

Variance:

Step 1: Calculate the mean: 6 + 7 + 10 + 12 + 13 + 4 + 8 + 12 = 72; 72 ÷ 8 = 9

Step 2: Subtract the mean from each data point and square the result: (6 - 9)² = 9, (7 - 9)² = 4, (10 - 9)² = 1, (12 - 9)² = 9, (13 - 9)² = 16, (4 - 9)² = 25, (8 - 9)² = 1, (12 - 9)² = 9

Step 3: Add all of the squared results together: 9 + 4 + 1 + 9 + 16 + 25 + 1 + 9 = 73

Step 4: Divide the sum of the squared results by the number of data points: 73 ÷ 8 = 9.125

Therefore, the variance is 9.125.

Question:

Find the mean and variance for the first n natural numbers

Answer:

Step 1: Calculate the mean of the first n natural numbers. Mean = (n+1)/2

Step 2: Calculate the variance of the first n natural numbers. Variance = (n^2 - 1)/12

Question:

Find the mean and variance for the data xi​ 6 10 14 18 24 28 30 fi​ 2 4 7 12 8 4 3

Answer:

Step 1: Find the sum of all the values of xi​: xi​ 6 10 14 18 24 28 30 fi​ 2 4 7 12 8 4 3

Sum of xi​ = 6 + 10 + 14 + 18 + 24 + 28 + 30 = 120

Step 2: Find the sum of all the values of fi​: fi​ 2 4 7 12 8 4 3

Sum of fi​ = 2 + 4 + 7 + 12 + 8 + 4 + 3 = 40

Step 3: Find the mean: Mean = (Sum of xi​) / (Sum of fi​) Mean = 120 / 40 Mean = 3

Step 4: Find the variance: Variance = [(xi​ - Mean)2 x fi​] / (Sum of fi​) Variance = [(6 - 3)2 x 2 + (10 - 3)2 x 4 + (14 - 3)2 x 7 + (18 - 3)2 x 12 + (24 - 3)2 x 8 + (28 - 3)2 x 4 + (30 - 3)2 x 3] / 40 Variance = [9 x 2 + 49 x 4 + 91 x 7 + 153 x 12 + 576 x 8 + 784 x 4 + 841 x 3] / 40 Variance = 11,068 / 40 Variance = 276.7

Question:

Find the mean and variance for the data xi​ 92 93 97 98 102 104 109 fi​ 3 2 3 2 6 3 3

Answer:

Step 1: Find the mean. Mean = (92 x 3 + 93 x 2 + 97 x 3 + 98 x 2 + 102 x 6 + 104 x 3 + 109 x 3)/(3 + 2 + 3 + 2 + 6 + 3 + 3) Mean = (2748 + 1862 + 2910 + 1956 + 6120 + 3120 + 3267)/20 Mean = 20,823/20 Mean = 1041.15

Step 2: Find the variance. Variance = [(92 - 1041.15)2 x 3 + (93 - 1041.15)2 x 2 + (97 - 1041.15)2 x 3 + (98 - 1041.15)2 x 2 + (102 - 1041.15)2 x 6 + (104 - 1041.15)2 x 3 + (109 - 1041.15)2 x 3]/20 Variance = [(−49.15)2 x 3 + (−48.15)2 x 2 + (−44.15)2 x 3 + (−43.15)2 x 2 + (−39.15)2 x 6 + (−37.15)2 x 3 + (−32.15)2 x 3]/20 Variance = [2411.0225 + 2304.0225 + 1957.0225 + 1858.0225 + 1529.0225 + 1382.0225 + 1026.0225]/20 Variance = 10,599.3/20 Variance = 529.965

Hence, the mean and variance for the given data are 1041.15 and 529.965 respectively.

Question:

The diameters of circles (in mm) drawn in a design are given below : Diameters No. of circles 33−36 15 37−40 17 41−44 21 45−48 22 49−52 25

Answer:

Step 1: Calculate the total number of circles in the design.

Total number of circles = 15 + 17 + 21 + 22 + 25 = 100

Step 2: Calculate the sum of all the diameters of the circles.

Sum of all the diameters = (33 + 36) x 15 + (37 + 40) x 17 + (41 + 44) x 21 + (45 + 48) x 22 + (49 + 52) x 25 = 10,455

Step 3: Calculate the average diameter of the circles.

Average diameter = 10,455 / 100 = 104.55 mm

Question:

Find the mean and standard deviation using short-cut method Xi​ 60 61 62 63 64 65 66 67 68 fi​ 2 1 12 29 25 12 10 4 5

Answer:

Step 1: Find the mean. Mean = (60 x 2) + (61 x 1) + (62 x 12) + (63 x 29) + (64 x 25) + (65 x 12) + (66 x 10) + (67 x 4) + (68 x 5) / (2 + 1 + 12 + 29 + 25 + 12 + 10 + 4 + 5)

Mean = 6,506 / 87

Mean = 74.76

Step 2: Find the standard deviation. Standard Deviation = √[(60-74.76)2 x 2 + (61-74.76)2 x 1 + (62-74.76)2 x 12 + (63-74.76)2 x 29 + (64-74.76)2 x 25 + (65-74.76)2 x 12 + (66-74.76)2 x 10 + (67-74.76)2 x 4 + (68-74.76)2 x 5] / (2 + 1 + 12 + 29 + 25 + 12 + 10 + 4 + 5)

Standard Deviation = √[(-14.76)2 x 2 + (-13.76)2 x 1 + (-12.76)2 x 12 + (-11.76)2 x 29 + (-10.76)2 x 25 + (-9.76)2 x 12 + (-8.76)2 x 10 + (-7.76)2 x 4 + (-6.76)2 x 5] / 87

Standard Deviation = 3.853

Question:

Find the mean and variance for the first 10 multiples of 3

Answer:

Step 1: List the first 10 multiples of 3: 3, 6, 9, 12, 15, 18, 21, 24, 27, 30

Step 2: Calculate the mean: Mean = (3 + 6 + 9 + 12 + 15 + 18 + 21 + 24 + 27 + 30) / 10 Mean = 135 / 10 Mean = 13.5

Step 3: Calculate the variance: Variance = [(3 - 13.5)2 + (6 - 13.5)2 + (9 - 13.5)2 + (12 - 13.5)2 + (15 - 13.5)2 + (18 - 13.5)2 + (21 - 13.5)2 + (24 - 13.5)2 + (27 - 13.5)2 + (30 - 13.5)2] / 10 Variance = [(-10.5)2 + (-7.5)2 + (-4.5)2 + (-1.5)2 + (1.5)2 + (4.5)2 + (7.5)2 + (10.5)2 + (13.5)2 + (16.5)2] / 10 Variance = [110.25 + 56.25 + 20.25 + 2.25 + 2.25 + 20.25 + 56.25 + 110.25 + 182.25 + 272.25] / 10 Variance = 835 / 10 Variance = 83.5

Question:

Find the mean and variance for the following frequency distribution Classes 0-30 30-60 60-90 90-120 120-150 150-180 180-210 Frequencies 2 3 5 10 3 5 2

Answer:

Mean:

Add the midpoints of each class: 0 + 30 + 60 + 90 + 120 + 150 + 180 = 630

Divide by the total number of classes: 630 / 7 = 90

Mean = 90

Variance:

Step 1: Find the deviation of each class from the mean: 0-30: 30 - 90 = -60 30-60: 60 - 90 = -30 60-90: 90 - 90 = 0 90-120: 120 - 90 = 30 120-150: 150 - 90 = 60 150-180: 180 - 90 = 90 180-210: 210 - 90 = 120

Step 2: Square the deviations: (-60)2 = 3600 (-30)2 = 900 02 = 0 302 = 900 602 = 3600 902 = 8100 1202 = 14400

Step 3: Multiply the squared deviations by the frequencies: 3600 x 2 = 7200 900 x 3 = 2700 0 x 5 = 0 900 x 10 = 9000 3600 x 3 = 10800 8100 x 5 = 40500 14400 x 2 = 28800

Step 4: Add the products from Step 3: 7200 + 2700 + 0 + 9000 + 10800 + 40500 + 28800 = 104400

Step 5: Divide the sum from Step 4 by the total number of frequencies: 104400 / 25 = 4176

Variance = 4176

Question:

Find the mean and variance for the following frequency distrubution Classes 0-10 10-20 20-30 30-40 40-50 Frequencies 5 8 15 16 6

Answer:

Mean =

(05 + 108 + 2015 + 3016 + 40*6)/(5+8+15+16+6)

Mean = 20

Variance =

[(0-20)^25 + (10-20)^28 + (20-20)^215 + (30-20)^216 + (40-20)^2*6]/(5+8+15+16+6)

Variance = 200

Question:

Find the mean variance and standard deviation using short-cut method Height in cms No. of children 70-75 3 75-80 4 80-85 7 85-90 7 90-95 15 95-100 9 100-105 6 105-110 6 110-115 3

Answer:

Step 1: Calculate the Mid-point of each class:

Height (cms) No. of children Mid-point (x) 70-75 3 72.5 75-80 4 77.5 80-85 7 82.5 85-90 7 87.5 90-95 15 92.5 95-100 9 97.5 100-105 6 102.5 105-110 6 107.5 110-115 3 112.5

Step 2: Calculate the Frequency (f):

Height (cms) No. of children Mid-point (x) Frequency (f) 70-75 3 72.5 3 75-80 4 77.5 4 80-85 7 82.5 7 85-90 7 87.5 7 90-95 15 92.5 15 95-100 9 97.5 9 100-105 6 102.5 6 105-110 6 107.5 6 110-115 3 112.5 3

Step 3: Calculate the Sum of Mid-point (x) and Frequency (f):

Sum of x = 72.5 + 77.5 + 82.5 + 87.5 + 92.5 + 97.5 + 102.5 + 107.5 + 112.5 = 825

Sum of f = 3 + 4 + 7 + 7 + 15 + 9 + 6 + 6 + 3 = 60

Step 4: Calculate the Mean (x̅):

Mean (x̅) = 825/60 = 13.75

Step 5: Calculate the Deviation (d):

Deviation (d) = x - x̅

Step 6: Calculate the Variance (σ2):

Variance (σ2) = d2 x f

Step 7: Calculate the Standard Deviation (σ):

Standard Deviation (σ) = √σ2

JEE స్టడీ మెటీరియల్ (గణితం)

01 సెట్లు

02 సంబంధాలు మరియు విధులు

03 త్రికోణమితి విధులు

04 గణిత ప్రేరణ సూత్రం

05 సంక్లిష్ట సంఖ్యలు మరియు చతుర్భుజ సమీకరణాలు

06 లీనియర్ అసమానతలు

07 ప్రస్తారణలు మరియు కలయికలు

08 ద్విపద సిద్ధాంతం

09 సీక్వెన్సులు మరియు సిరీస్

10 స్ట్రెయిట్ లైన్స్ వ్యాయామం

10 స్ట్రెయిట్ లైన్స్ ఇతరాలు

11 కోనిక్ విభాగాలు

12 త్రీ డైమెన్షనల్ జామెట్రీకి పరిచయం

13 పరిమితులు మరియు ఉత్పన్నాలు

14 గణిత రీజనింగ్

15 గణాంకాలు

16 సంభావ్యత