Stefan Boltzmann Law
Stefan Boltzmann Law states that the total energy radiated per unit surface area of a black body in unit time is directly proportional to the fourth power of the thermodynamic temperature of the body.
According to Stefan Boltzmann law, the amount of radiation emitted per unit time from an area A of a black body is proportional to the fourth power of the absolute temperature T.
u/A = $\sigma T^4$ (1)
Where $\sigma$ is Stefan’s constant = $5.67 \times 10^{-8} \text{ W/m}^2 \text{K}^4$
A body that is not a black body absorbs less and hence emits less radiation, given by equation (1).
For such a body, $$u = e \sigma AT^4$$ (2)
Where e = emissivity (which is equal to absorptive power) and lies between 0 and 1.
The net energy radiated by an area A per unit time at a temperature T0.
Δu = u - u_o = eσA [T_4 - T_{04}] ..... (3)
Also Read ⇒ [Insert Article Title Here](Insert Article Link Here)
The Stefan-Boltzmann Law states that the total energy radiated from a blackbody is proportional to the fourth power of its absolute temperature, i.e. $E \propto T^4$.
The thermodynamic temperature of a blackbody is directly proportional to the fourth power of the total energy emitted/radiated per unit surface area across all wavelengths per unit time.
#Derivation of Stefan-Boltzmann Law
The total power radiated per unit area over all wavelengths of a black body can be obtained by integrating Plank’s radiation formula. Thus, the radiated power per unit area as a function of wavelength is:
(\frac{dP}{d\lambda}\frac{1}{A} = \frac{2\pi hc^2}{\lambda^5 \left(e^{\frac{hc}{\lambda kT}} - 1\right)}) he said
“Where,
he said,”
P is Power Radiated.
The surface area of a blackbody is denoted by A.
λ is the wavelength of emitted radiation.
H is Planck’s constant.
The velocity of light is c.
K is Boltzmann’s constant.
T stands for temperature.
Simplified Stefan Boltzmann equation:
(\frac{d\left ( \frac{P}{A} \right )}{d\lambda } = \frac{2\pi hc^{2}}{\lambda^{5} \left(e^{\frac{hc}{\lambda kT}} - 1\right)})
On integrating both sides with respect to $\lambda$ and applying the limits, we get:
$$\int_{0}^{\infty} \frac{d\left(\frac{P}{A}\right)}{d\lambda} = \int_{0}^{\infty} \left[\frac{2\pi hc^2}{\lambda^5 \left(e^{\frac{hc}{\lambda kT}} - 1\right)}\right] d\lambda$$
The integrated power after separating the constants is:
(\begin{array}{l} \frac{P}{A} = 2\pi hc^2 \int_{0}^{\infty} \left[ \frac{d\lambda}{\lambda^5 \left(e^{\frac{hc}{\lambda kT}} - 1 \right)} \right] \dots \text{(1)} \end{array})
This can be solved analytically by substituting.
\(\begin{array}{l}x = \frac{hc}{\lambda kT}\end{array}\)
Therefore, $$dx = -\frac{hc}{\lambda^2 kT}d\lambda$$
(\begin{array}{l} h=\frac{x\lambda kT}{c}\end{array})
‘(\begin{array}{l}c=\frac{x\lambda kT}{h}\end{array})’
(\begin{array}{l} \Rightarrow d\lambda = -\frac{hc}{\lambda^{2}kT} dx\end{array})
Substituting them into equation (1) resulted in
(\begin{array}{l}\Rightarrow \frac{P}{A} = 2\pi \left ( \frac{x\lambda kT}{c} \right ) \left ( \frac{x\lambda kT}{h} \right )^{2} \int_{0}^{\infty} \left [ \frac{\left ( -\frac{\lambda^{2}kT}{hc} \right )dx}{e^{x}-1} \right ] \end{array} )
(\begin{array}{l}= 2\pi \left ( \frac{x^{3}k^{4}T^{4}}{h^{3}c^{2}} \right )\int_{0}^{\infty }\left [ \frac{dx}{e^{x}-1} \right ]\end{array} )
$$\frac{2\pi \left ( kT \right )^{4}}{h^{3}c^{2}}\int_{0}^{\infty }\left [ \frac{x^{3}}{e^{x}-1} \right ]dx$$
The above equation can be compared to the standard form of an integral:
(\int_{0}^{\infty}\left[\frac{x^3}{e^x - 1}\right],dx = \frac{\pi^4}{15})
Thus, substituting the above result, we get:
(\frac{P}{A}=\frac{2\pi \left ( kT \right )^{4}}{h^{3}c^{2}}\frac{\pi ^{4}}{15})
(\frac{P}{A} = \left ( \frac{2k^4 \pi^5}{15h^3 c^2} \right ) T^4)
On simplifying further, we get:
P/A = σ T4
Thus, we arrive at a mathematical form of Stephen Boltzmann’s Law:
ε = σT4 he asked, ‘is the library?’
He asked, “Where is the library?”
Ε = P / A
(\sigma = \left ( 5.670\times 10^{8};\frac{watts}{m^{2}K^{4}} \right ) = \left ( \frac{2 k^{4}\pi ^{5}}{15h^{3}c^{2}}\right ))
This quantum mechanical result could efficiently explain the behavior of gases at low temperature, which classical mechanics could not predict!
Problems on Stefan Boltzmann Law
Answer: Calculate the initial value of net power emitted by a body of emissivity (e = 0.75) with a surface area of 300 cm2 and temperature 227 ºC, kept in a room at temperature 27 ºC, using the Stephens Boltzmann law.
Using equation [3];
P = $\varepsilon \sigma A \left( T^4 - T_0^4 \right)$
= (0.75) $\times$ (5.67 $\times$ 10$^{-8}$ W/m$^2$ - k$^4$) $\times$ (300 $\times$ 10$^{-4}$ m$^2$) $\times$ [(500 K)$^4$ - (300 K)$^4$]
69.4 Watts
Example 2: When the temperature of a hot black body is increased such that its most intense radiation corresponds to 10,000 Å, then the energy it emits is 32 J m-2 s-1.
Given:
This is a headline
Solution:
This is a Headline
Wein’s Displacement Law is: $$\lambda m.T = b$$
T ∝ \frac{1}{\lambda m}
Here, when λm becomes half, the Temperature doubles.
‘Now, from Stefan Boltzmann Law, $e = sT^4$’
e1/e2 = (T1/T2)^4
e2 = (T2/T1)^4, e1 = 16
= 256 J m⁻² s⁻¹
Check Out:
HC Verma Solutions for Physics
Frequently Asked Questions (FAQs)
What is the Stefan-Boltzmann Law?
The Stefan-Boltzmann law states that the amount of radiation emitted by a black body per unit area is directly proportional to the fourth power of the temperature. What is the value of Stefan’s constant?
Stefan’s constant has a value of 5.67 x 10-8 W m-2 K-4.
The range of value of emissivity is 0 to 1.
The range of value of emissivity is between 0 and 1.
NEET స్టడీ మెటీరియల్ (భౌతికశాస్త్రం)
- గురుత్వాకర్షణ కారణంగా త్వరణం
- కెపాసిటర్ మరియు కెపాసిటెన్స్
- సెంటర్ ఆఫ్ మాస్
- కెపాసిటర్ల కలయిక
- కండక్షన్
- మొమెంటం పరిరక్షణ
- కూలంబ్స్ చట్టం
- స్థితిస్థాపకత
- విద్యుత్ ఛార్జ్
- ఎలక్ట్రిక్ ఫీల్డ్ ఇంటెన్సిటీ
- ఎలక్ట్రిక్ పొటెన్షియల్ ఎనర్జీ
- ఎలెక్ట్రోస్టాటిక్స్
- శక్తి
- కెపాసిటర్లో నిల్వ చేయబడిన శక్తి
- ఈక్విపోటెన్షియల్ సర్ఫేస్
- ఎస్కేప్ మరియు ఆర్బిటల్ వెలాసిటీ
- గాస్ లా
- గురుత్వాకర్షణ
- గురుత్వాకర్షణ క్షేత్ర తీవ్రత
- గ్రావిటేషనల్ పొటెన్షియల్ ఎనర్జీ
- కెప్లర్ యొక్క చట్టాలు
- నిశ్చలస్థితి క్షణం
- ఊపందుకుంటున్నది
- న్యూటన్ శీతలీకరణ చట్టం
- రేడియేషన్
- సింపుల్ హార్మోనిక్ మోషన్
- సాధారణ లోలకం
- శబ్ధ తరంగాలు
- స్ప్రింగ్ మాస్ సిస్టమ్
- స్టీఫన్ బోల్ట్జ్మాన్ లా
- అలల సూపర్పొజిషన్
- యూనిట్లు మరియు కొలతలు
- వేవ్ మోషన్
- వేవ్ ఆప్టిక్స్
- యంగ్స్ డబుల్ స్లిట్ ప్రయోగం