Integration

The antiderivative of $g’(x)$ with respect to $dx$ is found through the process of integration, and is given by:

∫ g’(x) \ dx = g(x) + C, \ where \ C \ is \ the \ constant \ of \ integration.

The two types of integrals include:

  • Indefinite Integrals
  • Definite Integrals

Definite Integral: An integral with specified upper and lower limits, without the constant of integration.

Indefinite integral: An integral without limits and an arbitrary constant added.

This article provides a comprehensive overview of standard integrals, their properties, important formulas, and examples of integration, which will help students gain a deeper understanding of the topic.

Standard Integrals

Integrals of Rational and Irrational Functions

(\begin{array}{l} \int x^n , dx = \frac{x^{n+1}}{n+1} + C, \quad n \ne 1 \ \int \frac{1}{x} , dx = \ln |x| + C \ \int c , dx = c \cdot x + C \ \int x , dx = \frac{x^2}{2} + C \ \int x^2 , dx = \frac{x^3}{3} + C \ \int \frac{1}{x^2} , dx = -\frac{1}{x} + C \\end{array})

(\begin{array}{l} \int \sqrt{x} , dx = \frac{2 \cdot x \cdot \sqrt{x}}{3} + C \ \int \frac{1}{1+x^2} , dx = \arctan x + C \ \int \frac{1}{\sqrt{1-x^2}} , dx = \arcsin x + C \end{array})

Integrals of Trigonometric Functions

(\begin{array}{l} \int \sin x,dx = -\cos x + C \ \int \cos x,dx = \sin x + C \ \int \tan x,dx = \ln|\sec x| + C \ \int \sec x,dx = \ln|\tan x + \sec x | + C \\end{array})

(\begin{array}{l} \int \sin^2x,dx = \frac{1}{2}(x - \sin x \cdot \cos x) + C \ \int \cos^2x,dx = \frac{1}{2}(x + \sin x \cdot \cos x) + C \ \int \tan^2x,dx = \tan x - x + C \ \int \sec^2x,dx = \tan x + C \end{array})

Integrals of Exponential and Logarithmic Functions

(\begin{array}{l} \int \ln x ,dx = x \cdot \ln x - x + C\ \int x^n \cdot \ln x ,dx = \frac{x^{n+1} \cdot \ln x}{n+1} - \frac{x^{n+1}}{(n+1)^2} + C\ \int e^x ,dx = e^x + C\ \int a^x ,dx = \frac{a^x}{\ln a} + C\ \end{array})

Properties of Integration

Property 1: (\int\limits_{a}^{a} f(x),dx = 0)

Property 2: (\int\limits_{a}^{b}{f(x),dx=-\int\limits_{b}^{a}{f(x),dx}})

Property 3: (\int\limits_{a}^{b}{f(x) , dx} = \int\limits_{a}^{b}{f(t) , dt})

Property 4: (\int\limits_{a}^{b}{f(x),dx} = \int\limits_{a}^{c}{f(x),dx} + \int\limits_{c}^{b}{f(x),dx})

Property 5: (\int\limits_{a}^{b}{f(x)dx} = \int\limits_{a}^{b}{f(a+b-x)dx})

(\begin{array}{l}\int\limits_{0}^{a}{f(x)dx} = \int\limits_{0}^{a}{f(a-x)dx}\end{array})

Also Read Definite and Indefinite Integration

Useful Formulas

* (\int{{e}^{ax}}\sin bx=\frac{{e}^{ax}}{{a}^{2}+{b}^{2}}\left[ a\sin bx-b\cos bx \right])

* (\int{{{e}^{ax}}\cos bx=\frac{{{e}^{ax}}}{{{a}^{2}}+{{b}^{2}}}\left[ a\cos bx+b\sin bx \right]}\)

*(\int{{e}^{x}}\left( f(x)+f’(x) \right) = {e}^{x}f(x))

Illustration:

(\int{{e}^{x}}(\sin x+\cos x)dx={{e}^{x}}\sin x+c)

(\int{{e}^{x}(lnx+\frac{1}{x})dx={{e}^{x}}lnx+c)

Integrating Trigonometric Functions

Type 1: (\int{{{\sin }^{m}}x{{\cos }^{n}}xdx})

  1. If m is odd, put cos x = t

2. If n is odd, let sin x = t

If m and n are rational, then put tan x = t

If both are even, then use the reduction method

(\begin{array}{l}Q\int{\frac{(1-t^2)}{t^6}dt}=\int{\frac{{{\cos }^{3}}x}{{{\sin }^{6}}x}dx}\end{array} )

t = sin(x)

(\int{{{t}^{-5}}dt})

(\begin{array}{l}=\frac{-1}{5\sin^5x}+\frac{1}{3\sin^3x}+c\end{array})

Type 2: (\int{\frac{dx}{a\cos x + b\sin x + c}})

t = \tan\left(\frac{x}{2}\right)

Illustration

(\begin{array}{l}\int{\frac{dx}{2+\sin x}} = \int{\frac{d(2\tan\left(\frac{x}{2}\right))}{2+\sin x}} \end{array} )

(\begin{array}{l}\Rightarrow \int{\frac{d(2\tan\left(\frac{x}{2}\right))}{2+\sin x}} = \int{2\frac{dt}{1+t^2}} \end{array} )

(\begin{array}{l}\Rightarrow t=\tan \left( \frac{x}{2} \right)\end{array} )

(\frac{d}{dt}\left( {{t}^{2}} \right)=2t)

(\begin{array}{l}=\int{\frac{dt}{{{t}^{2}}+t+1}}\end{array})

(\frac{2}{\sqrt{3}}\arctan\left(\frac{2t+1}{\sqrt{3}}\right))

(\begin{array}{l}=\frac{2}{\sqrt{3}}\arctan\left(\frac{2\tan\frac{x}{2}+1}{\sqrt{3}}\right)+c\end{array})

Substitutions for Irrational Functions

Form 1: (\displaystyle \int \sqrt{Quadratic} \ dx )

(\begin{array}{l}\text{Substitute}\ m=Qudratic,\ n=Linear\end{array})

Form 2: (\int{\frac{dx}{\sqrt{l_{1}in}}},,\int{\frac{l_{1}in}{\sqrt{l_{1}in}}}dx,,\int{\frac{\sqrt{l_{1}in}}{l_{1}in}dx})

(\begin{array}{l}\text{Substitute}\ li{{n}_{1}}={{t}^{2}} \ \rightarrow \ li{{n}_{1}}={{t}^{2}} \end{array} )

**Form 3:** (\int{\frac{1}{\sqrt{Qua}}dx})

Substitute $$lin = \frac{1}{t}$$

Form 4: (\int{\frac{dx}{\left( a{{x}^{2}}+b \right)\sqrt{\left( {{x}^{2}}+d \right)}})

Substitute x = $\frac{1}{t}$ and then $u^2$ for $a t^2 + b$

Integration Formulas

  1. (\int\limits_{a}^{b}{f(x),dx} = \int\limits_{a}^{b}{f(t),dt})

  2. (\begin{array}{l}-\int\limits_{a}^{b}{f(x)dx=}\int\limits_{b}^{a}{f(x)dx}\end{array} )

$$\int_a^b f(x) , dx = \int_a^c f(x) , dx + \int_c^b f(x) , dx$$

  1. (\int\limits_{a}^{b}{f(x)dx=\int\limits_{a}^{b}{f(a+b-x)dx}})

  2. $$\int\limits_{0}^{2a}{f(x)dx}=\int\limits_{0}^{a}{f(x)dx}+\int\limits_{0}^{a}{f(2a-x)dx}$$ $$=0 \quad \text{if} \quad f(2a-x)=-f(x)$$ and $$=2\int\limits_{0}^{a}{f(x)} \quad \text{if} \quad f(2a-x)=f(x)$$

6. $$\int_{-a}^{a}{f(x)dx=\begin{cases} 0 & \text{if } f(x) \text{ is odd} \ 2\int_{0}^{a}{f(x)dx} & \text{if } f(x) \text{ is even} \end{cases}}$$

Problems on Integration

Illustration:

$$\int_{0}^{2}{{x}^{2}\left[ x \right]dx}=\int_{0}^{1}{{x}^{2}\left[ x \right]dx}+\int_{1}^{2}{{x}^{2}\left[ x \right]dx}$$

(\int\limits_{0}^{1}{x^2,dx} + \int\limits_{1}^{2}{x^2,dx})

$\int_{1}^{2}\frac{x^3}{3}dx = 0$

(\frac{8-1}{3} = \frac{7}{3})

Illustration:

(\int\limits_{{\pi }/{6}}^{{\pi }/{3}}{\frac{\sqrt{\sin x}}{\sqrt{\sin x}+\sqrt{\cos x}}dx})

(\begin{array}{l}I = \int{\frac{\sqrt{\cos (\frac{\pi}{2} – x)}}{\sqrt{\sin (\frac{\pi}{2} – x)}+\sqrt{\cos (\frac{\pi}{2} – x)}}dx}\end{array})

(\int\limits_{\frac{\pi}{6}}^{\frac{\pi}{3}}{\frac{\sqrt{\sin x} + \sqrt{\cos x}}{\sqrt{\sin x} + \sqrt{\cos x}},dx} = \int\limits_{\frac{\pi}{6}}^{\frac{\pi}{3}}{1,dx} = \frac{\pi}{6})

(\begin{array}{l}I=\frac{\pi }{12}\end{array})

Illustration:

(\begin{array}{l}I=\int{{{\sin }^{100}}x{{\cos }^{99}}x,dx}\end{array} )

Here f(2π - x) = f(x)

(Or\ \begin{array}{l}I=2\int\limits_{0}^{\pi}{{{\sin }^{100}}x{{\cos }^{99}}x}\end{array})

(\int\limits_{0}^{\pi }{{{\sin }^{100}}\left( \pi -x \right){{\cos }^{99}}\left( \pi -x \right)},dx = 2)

-I = I

I = 0

Illustration:

(\int\limits_{-5}^{5}{{{x}^{3}}\ \text{d}x=0} \ \text{as}\ f(x)=x^3 \ \text{is\ an\ odd\ function})

Leibnitz’s Rule

(\frac{d}{dx}\int\limits_{u(x)}^{v(x)}{f(t)dt} = f(v(x))\frac{dv(x)}{dx} - f(u(x))u’(x))

Practice Problems

Problem 1. (\begin{array}{l}\text{If}\ \int\limits_{x^2}^{x^3}{\frac{1}{\log t}dt=y},\ \text{find}\ \frac{dy}{dx}\end{array})

(\frac{dy}{dx}=x\left( x-1 \right){{\left( \log x \right)}^{-1}})

Problem 2. If $$\int\limits_{\sin x}^{1}{{{t}^{2}}f\left( t \right)dt=1-\sin x.$$ where $x \in (0, \frac{\pi}{2})$, find $f(\frac{1}{\sqrt{3}})$.

Problem 3. (\displaystyle \lim_{x \to 2} \int_{6}^{f(x)}\frac{4t^{3}}{x-2}dt = 18.)

Problem 4. (\displaystyle \lim_{x\to \infty }\frac{\int\limits_{0}^{x}{{{e}^{{{x}^{2}}}}dx}}{\int\limits_{0}^{x}{{{e}^{2{{x}^{2}}}}dx}}=0)

Integration by Parts

(\int{uv,dx} = u\int{vdx} - \int{u’\left( \int{vdx} \right)},dx)

Illustration:

Q. (\int{\ln,x,dx} = \int{\ln,x.1,dx})

(\begin{array}{l}x,\ell n,x - \int{x,dx - \int{\frac{1}{x},dx}}\end{array})

(\begin{array}{l}=\ell n,x-1\end{array})

Q. (\int x,{{e}^{x}}dx = x\int{{{e}^{x}}dx - \int{{{\left( 1 \right)}}\left( \int{{{e}^{x}}dx} \right)}dx} )

(\int x{{e}^{x}}dx = x{{e}^{x}} - \int{{{e}^{x}}dx})

\(\frac{d}{dx} \left( xe^x - e^x \right) \)

Integration of Irrational Algebraic Functions

Type $\int{\frac{dx}{{{\left( ax+b \right)}^{k}}\sqrt{px+q}}};$

Q. (\int{\frac{x}{\left( x-3 \right)\sqrt{x+1}}dx})

x + 1 = t2 $\Rightarrow$ x = t2 - 1

(\begin{array}{l}I=2\int{\frac{{{t}^{2}}-1}{{{t}^{2}}-4},dt}\end{array})

\(\int{2}+\frac{3}{{{t}^{2}}-4}dt\)

(\begin{array}{l}2t + \frac{3}{2} \ln \left| \frac{t-2}{t+2} \right| + c\end{array})

(\begin{array}{l}2\sqrt{x+1} + \frac{3}{2}\ln\left|\frac{\sqrt{x+1}-2}{\sqrt{x+1}+2}\right| + c\end{array})

(\int\limits_{0}^{2a}{f\left( x \right)dx} = \int\limits_{0}^{a}{f\left( x \right)dx} + \int\limits_{0}^{a}{f\left( 2a-x \right)dx})

f(2a - x) = -f(x) \Rightarrow 0

(\begin{array}{l}=2\int\limits_{0}^{a}{f\left( 2a - x \right)}\ \text{if}\ f(2a – x) = f(x)\end{array} )

Optimizing Area for Maximum and Minimum Values

Illustration:

f(x) = x^2 + 2

I love to listen to music!

Answer: I enjoy listening to music!

(\int\limits_{2}^{\alpha }{\left( {{x}^{2}}+2-f\left( x \right) \right)dx} ={{\alpha }^{3}}-4{{\alpha }^{2}}+8 )

Differentiating the Labniz Equation

(\begin{array}{l}3{{\alpha }^{2}}-8\alpha - {{\alpha }^{2}} - 2 + f\left( \alpha \right) = 0\end{array})

$f(x) = -2x^2 + 8x + 2$

Important JEE Main Questions for Integrations

Integrations Important JEE Main Questions

Definite Integration JEE Questions

![Definite Integration]()

Indefinite Integration JEE Questions

![Indefinite Integration]()

Solved Problems on Integration

Problem 1: (\int_{a}^{b}{\frac{dx}{\cos (x-a)\cos (x-b)}})

Given:

This is a heading

Solution:

This is a heading

(\begin{array}{l} \int_{}^{{}}{\frac{dx}{\cos(x-a)\cos(x-b)}}\ = \frac{1}{\sin(a-b)}\int_{}^{{}}{\frac{\sin\left{(x-b)-(x-a)\right}}{\cos(x-a),.,\cos(x-b)},dx}\ = \frac{1}{\sin(a-b)}\int_{}^{{}}{\left{\frac{\sin(x-b)}{\cos(x-b)}-\frac{\sin(x-a)}{\cos(x-a)}\right}dx}\ = \text{cosec},(a-b)\log\frac{\cos(x-a)}{\cos(x-b)}+c \end{array})

Problem 2: (\int_{}^{}\frac{dx}{\sqrt{x+a}+\sqrt{x+b}})

Given:

This is a header

Solution:

This is a header

(\begin{array}{l} \int_{{}}^{{}}{\frac{dx}{\sqrt{x+a}+\sqrt{x+b}} = \int_{{}}^{{}}{\frac{\sqrt{x+a}-\sqrt{x+b}}{(x+a)-(x+b)},dx} \\ = \frac{1}{(a-b)}\int_{{}}^{{}}{{{(x+a)}^{1/2}},dx} - \frac{1}{(a-b)}\int_{{}}^{{}}{{{(x+b)}^{1/2}},dx} \\ = \frac{2}{3(a-b)}[{{(x+a)}^{3/2}}-{{(x+b)}^{3/2}}] + c \end{array})

Problem 3: (\int_{}^{}{\frac{x^3-x-2}{(1-x^2)} \ dx})

Given:

This is a Heading

Solution:

This is a Heading

$$\int_{}^{}{\frac{x^3-x-2}{(1-x^2)},dx} = \int_{}^{}{\frac{-x(1-x^2)}{(1-x^2)},dx-\int_{}^{}{\frac{2}{1-x^2},dx}}$$ $$=-\int_{}^{}{x,dx}-2\int_{}^{}{\frac{1}{1-x^2},dx}$$ $$=\frac{-x^2}{2}+\log \left(\frac{x-1}{x+1}\right)+c.$$

Problem 4: (\int_{}^{}\frac{{{\sin }^{8}}x-{{\cos }^{8}}x}{1-2{{\sin }^{2}}x{{\cos }^{2}}x}\ dx)

Given:

Hello World

Solution:

Hello World

(\begin{array}{l} \int_{}^{{}}{\frac{{\sin^{8}}x-{\cos^{8}}x}{1-2{\sin^{2}}x{\cos^{2}}x},dx}\ = \int_{}^{{}}{\frac{({\sin^{4}}x+{\cos^{4}}x)({\sin^{4}}x-{\cos^{4}}x)}{{({\sin^{2}}x+{\cos^{2}}x)^{2}}-2{\sin^{2}}x{\cos^{2}}x}},dx\ = \int_{}^{{}}{({\sin^{4}}x-{\cos^{4}}x),dx}\ = \int_{}^{{}}{({\sin^{2}}x+{\cos^{2}}x)({\sin^{2}}x-{\cos^{2}}x),dx}\ = \int_{}^{{}}{({\sin^{2}}x-{\cos^{2}}x),dx}\ = \int_{}^{{}}{-\cos 2x,dx=-\frac{\sin 2x}{2}+c} \end{array})

Problem 5: (\int_{}^{}{\frac{x^2 , dx}{(a+bx)^2}} = )

Given:

This is a heading

Solution:

This is a heading

x = (t - a) / b
dx = dt/b

(\begin{array}{l}I= \frac{1}{{{b}^{2}}}\left[ x+\frac{a}{b}-\frac{2a}{b}\log (a+bx)-\frac{{{a}^{2}}}{b}\frac{1}{(a+bx)} \right]\end{array})

Problem 6: Solve (\int{\frac{2\cos x+3\sin x}{4\cos x+5\sin x}},dx)

#This is a heading

Solution:

This is a heading

Problem of type $$\int{\frac{a\cos x+b\sin x+p}{c\cos x+d\sin x+q}},dx,\int{\frac{a{{e}^{x}}+b{{e}^{-x}}+c}{d{{e}^{x}}+f{{e}^{-x}}+h}},dx$$ can be solved by $$Nr=nDr+mDr’$$ she said

She said, “Now,”

2 cos x + 3 sin x = a(4 cos x + 5 sin x) + b(-4 sin x + 5 cos x)

Solving by comparing, we get

(\begin{array}{l}a=\frac{23}{41} \ b=\frac{-2}{41}\end{array} )

(\therefore I=\int{\frac{25}{41}\left( \frac{-4\sin x+5\cos x}{4\cos x+5\sin x} \right)dx})

(\begin{array}{l} \frac{23}{41}x-\frac{2}{41}\ln\left| 4\cos x+5\sin x \right| + c \end{array})

Problem 7: Find the area of the region bounded by the curves $y^2 \leq 4x$, $x^2 + y^2 \geq 2x$, and $x \leq y + 2$ in the first quadrant.

Given:

This is a statement

Answer:

This is a statement

Problems on integration example 4

(\int\limits_{0}^{{{\left( \sqrt{3}+1 \right)}^{2}}}{\sqrt{4x},,dx-} ar(semicircle) + ar(\triangle ABC))

(\frac{2{{x}^{3/2}}}{3}_{0}^{{{\left( \sqrt{3}+1 \right)}^{2}}}-\frac{1}{2}{{\left( \sqrt{3}+1 \right)}^{2}}2\left( \sqrt{3}+1 \right)-\sqrt{4}\left( \frac{\pi }{2} \right))

(\frac{{{\left( \sqrt{3}+1 \right)}^{3}}{3} - \frac{\pi}{2})

Most Important Questions from Definite Integration for JEE Advanced

Most Important Questions from Definite Integration for JEE Advanced

Frequently Asked Questions

Integration in Maths refers to the process of calculating the area under a curve by breaking it down into smaller sections and adding them together.

The process of finding the antiderivative of a function is known as Integration.

The integral of x is $\int x ,dx = \frac{x^2}{2} + C$

Integral of x = $\int x \; dx = \frac{x^2}{2} + C$, where $C$ is the constant of integration.

The integral of sin x is -cos x + C, where C is an arbitrary constant.

Integral of $\sin x = -\cos x + C$

  1. Finding the area under a curve
  2. Computing the volume of a solid of revolution

Integration is used to:

  • Find the area under a curve
  • Find the velocity of a satellite
  • Find the trajectory of a satellite