Differentiation And Integration Of Determinants
#Differentiating and Integrating Determinants This lesson will provide an overview of the steps needed to differentiate and integrate determinants, with several example questions to help illustrate the process.
All Contents on Determinants
System of Linear Equations using Determinants
Differentiation and Integration of Determinants
Differentiation of Determinants
Let $\Delta(x) = \left| \begin{matrix} f_1(x) & g_1(x) \ f_2(x) & g_2(x) \end{matrix} \right|$
If f1(x) = f2(x) and g1(x) = g2(x), then x is a solution to both equations.
(\Delta’\left( x \right)=\left| \begin{matrix} {{f}_{1}}’\left( x \right) & {{g}_{1}}’\left( x \right) \ {{f}_{2}}’\left( x \right) & {{g}_{2}}’\left( x \right) \ \end{matrix} \right|+\left| \begin{matrix} {{f}_{1}}\left( x \right) & {{g}_{1}}’\left( x \right) \ {{f}_{2}}\left( x \right) & {{g}_{2}}’\left( x \right) \ \end{matrix} \right|)
What is the Process for Differentiating a Determinant?
Thus, to differentiate a determinant, we differentiate one row (or column) at a time, keeping others unchanged. If we write (\begin{array}{l}\Delta \left( x \right)=\left[ {{C}_{1}},,,{{C}_{2}} \right],\end{array} ) where $C_i$ denotes the $i^{th}$ column, then (\begin{array}{l}\Delta’\left( x \right)=\left[ {{C}_{1}}’,,,{{C}_{2}} \right]+\left[ {{C}_{1}},,,{{C}_{2}}’ \right],\end{array} ) where $C_i’$ denotes the column obtained by differentiating functions in the $i^{th}$ column $C_i$. Also, if (\begin{array}{l}\Delta \left( x \right)=\left[ \begin{matrix} {{R}_{1}} \ {{R}_{2}} \ \end{matrix} \right],; then ;\Delta’ \left( x \right)=\left[ \begin{matrix} {{R}_{1}}’ \ {{R}_{2}} \ \end{matrix} \right]+\left[ \begin{matrix} {{R}_{1}} \ {{R}_{2}}’ \ \end{matrix} \right]\end{array} )
Similarly, we can differentiate determinants of higher order.
Note: Differentiation can also be done column-wise by taking one column at a time.
Integration of Determinants
If $f(x)$, $g(x)$ and $h(x)$ are functions of $x$ and $a$, $b$, $c$, $\alpha$, $\beta$ and $\gamma$ are constants such that
$$\Delta \left( x \right)=\left| \begin{matrix} f\left( x \right) & g\left( x \right) & h\left( x \right) \ a & b & c \ \alpha & \beta & \gamma \ \end{matrix} \right|$$
The determinant integral is given by; (\begin{array}{l}\int{\Delta \left( x \right)dx=\left| \begin{matrix} \int{f\left( x \right)dx} & \int{g\left( x \right)dx} & \int{h\left( x \right)dx} \ a & b & c \ \alpha & \beta & \gamma \ \end{matrix} \right|}\end{array} )
Differentiation and Integration of Determinants: Example Problems
Example 1: Evaluate $\int_0^{\pi/2}\left| \begin{matrix} {\sin^2}x & \log \cos x & \log \tan x \ {{n}^{2}} & 2n-1 & 2n+1 \ 1 & -2\log 2 & 0 \ \end{matrix} \right|dx$.
Given:
This is a title
Solution:
This is a title
By applying integration to the variable elements of the determinant, we can solve the given problem.
We have $$\Delta \left( x \right)=\left| \begin{matrix} {{\sin }^{2}}x & \log \cos x & \log \tan x \ {{n}^{2}} & 2n-1 & 2n+1 \ 1 & -2\log 2 & 0 \ \end{matrix} \right|;\\int\limits_{0}^{\pi /2}{\Delta \left( x \right)dx=\left| \begin{matrix} \int\limits_{0}^{\pi /2}{{{\sin }^{2}}x,dx} & \int\limits_{0}^{\pi /2}{\log ,\cos x,dx} & \int\limits_{0}^{\pi /2}{\log \tan x,dx} \ {{n}^{2}} & 2n-1 & 2n+1 \ 1 & -2\log 2 & 0 \ \end{matrix} \right|}$$
(\left| \begin{matrix} \frac{\pi }{4} & -\frac{\pi }{2}\log 2 & 0 \ {{n}^{2}} & 2n-1 & 2n+1 \ 1 & -2\log 2 & 0 \ \end{matrix} \right|)
-(π/2) 2n log 2 + (π/2) log 2
= 0
Example 2: If $$\begin{array}{l}f\left( x \right)=\left| \begin{matrix} {{x}^{n}} & \sin x & \cos x \ n! & \sin \frac{n\pi }{2} & \cos \frac{n\pi }{2} \ a & {{a}^{2}} & {{a}^{3}} \ \end{matrix} \right|,; then ;show ;that ;\frac{{{d}^{n}}}{d{{x}^{n}}}\left{ f\left( x \right) \right}=0 ;at ;;x=0.\end{array}$$ then
$$\frac{{{d}^{n}}}{d{{x}^{n}}}\left{ f\left( 0 \right) \right}=0$$
Given:
This is a heading
Solution:
This is a heading
By taking the derivative of each element of the determinant, we can solve the given problem.
We have, \(\begin{array}{l}f\left( x \right)=\left| \begin{matrix} {{x}^{n}} & \sin x & \cos x \ n! & \sin \frac{n\pi }{2} & \cos \frac{n\pi }{2} \ a & {{a}^{2}} & {{a}^{3}} \ \end{matrix} \right|; \\frac{{{d}^{n}}}{d{{x}^{n}}}\left{ f\left( x \right) \right}=\left| \begin{matrix} \frac{{{d}^{n}}}{d{{x}^{n}}}\left( {{x}^{n}} \right) & \frac{{{d}^{n}}}{d{{x}^{n}}}\left( \sin x \right) & \frac{{{d}^{n}}}{d{{x}^{n}}}\left( \cos x \right) \ n! & \sin \frac{n\pi }{2} & \cos \frac{n\pi }{2} \ a & {{a}^{2}} & {{a}^{3}} \ \end{matrix} \right|\end{array} )
(\begin{array}{l}=\left| \begin{matrix} n! & \sin \left( x+\frac{n\pi }{2} \right) & \cos \left( x+\frac{n\pi }{2} \right) \ n! & \sin \frac{n\pi }{2} & \cos \frac{n\pi }{2} \ a & {{a}^{2}} & {{a}^{3}} \ \end{matrix} \right|\ {{\left( \frac{{{d}^{n}}}{d{{x}^{n}}}\left{ f\left( x \right) \right} \right)}_{x=0}}=\left| \begin{matrix} n! & \sin \frac{n\pi }{2} & \cos \frac{n\pi }{2} \ n! & \sin \frac{n\pi }{2} & \cos \frac{n\pi }{2} \ a & {{a}^{2}} & {{a}^{3}} \ \end{matrix} \right| \ = 0\end{array})
Problem Solving Tactics
Let (\Delta \left( x \right)=\left| \begin{matrix} {{f}_{1}}\left( x \right) & {{f}_{2}}\left( x \right) & {{f}_{3}}\left( x \right) \ {{b}_{1}} & {{b}_{2}} & {{b}_{3}} \ {{c}_{1}} & {{c}_{2}} & {{c}_{3}} \ \end{matrix} \right|), then (\Delta’ \left( x \right)=\left| \begin{matrix} {{f}_{1}}’\left( x \right) & {{f}_{2}}’\left( x \right) & {{f}_{3}}’\left( x \right) \ {{b}_{1}} & {{b}_{2}} & {{b}_{3}} \ {{c}_{1}} & {{c}_{2}} & {{c}_{3}} \ \end{matrix} \right|).
In general,
$$\left|\begin{matrix}{\Delta}^n(x) &=& \left|\begin{matrix}f_1^n(x) & f_2^n(x) & f_3^n(x)\ b_1 & b_2 & b_3\ c_1 & c_2 & c_3\end{matrix}\right|\end{matrix}\right|$$ where n is any positive integer and $f_n(x)$ denotes the nth derivative of $f(x)$.
Let (\Delta \left( x \right)=\left| \begin{matrix} f\left( x \right) & g\left( x \right) & h\left( x \right) \ a & b & c \ l & m & n \ \end{matrix} \right| )
a, b, c, l, m, and n are constants here.
‘\(\int\limits_{a}^{b}{\Delta \left( x \right)dx=\left| \begin{matrix} \int\limits_{a}^{b}{f\left( x \right)dx} & \int\limits_{a}^{b}{g\left( x \right)dx} & \int\limits_{a}^{b}{h\left( x \right)dx} \ a & b & c \ l & m & n \ \end{matrix} \right|\)’
If the elements of more than one column or row are functions of $x$, then the integration can only be done after evaluating/expanding the determinant.
Video Lessons
#Integration - Important Questions
Important Theorems of Differentiation for JEE
![Important Theorems of Differentiation for JEE]()
Frequently Asked Questions
What is the Process for Differentiating a Determinant?
To differentiate a determinant, we have to:
- Differentiate one row or column at a time, keeping others unchanged
- Add the determinants so obtained
Integrating a Determinant
If the elements of more than one column or row are functions of $x$, then we should evaluate/expand the determinant before integrating each element of the first row.
An application of integration is finding the area under a curve.
We use integration to find the area under the curve of a function that is integrated.
JEE Study Material (Mathematics)
- 3D Geometry
- Adjoint And Inverse Of A Matrix
- Angle Measurement
- Applications Of Derivatives
- Binomial Theorem
- Circles
- Complex Numbers
- Definite And Indefinite Integration
- Determinants
- Differential Equations
- Differentiation
- Differentiation And Integration Of Determinants
- Ellipse
- Functions And Its Types
- Hyperbola
- Integration
- Inverse Trigonometric Functions
- Limits Continuity And Differentiability
- Logarithm
- Matrices
- Matrix Operations
- Minors And Cofactors
- Properties Of Determinants
- Rank Of A Matrix
- Solving Linear Equations Using Matrix
- Standard Determinants
- Straight Lines
- System Of Linear Equations Using Determinants
- Trigonometry
- Types Of Matrices