07 సమగ్రతలు

ఎజక్సర్సైజ్

Question:

Integrate the function x+3/x^2−2x−5

Answer:

  1. Rewrite the function in terms of the derivative of x: x + 3/x^2 - 2x - 5 = (1/x^2 - 2)dx

  2. Integrate both sides: ∫(1/x^2 - 2)dx = ∫(x + 3/x^2 - 2x - 5)dx

  3. Solve the left side of the equation: -1/x + 2x = ∫(1/x^2 - 2)dx

  4. Solve the right side of the equation: -1/x + 2x = ∫(x + 3/x^2 - 2x - 5)dx

  5. Combine the two equations: ∫(1/x^2 - 2)dx = ∫(x + 3/x^2 - 2x - 5)dx = -1/x + 2x

Question:

∫xdx​/(x−1)(x−2) equals log∣​(x−1)^2​/x−2∣+C log∣(x−2)^2​/x−1∣​+C log∣​(x−1​/x−2)^2∣+C log∣(x−1)(x−2)∣+C

Answer:

Answer:

∫xdx/(x−1)(x−2) = ∫xdx/(x-1) - ∫xdx/(x-2)

= ∫xdx/(x-1) - ∫(x-1)dx/(x-2)

= log|x-1| - log|x-2| + C

= log|(x-1)/(x-2)| + C

= log|(x-1)(x-2)| + C

Question:

Integrate the rational function 2x/x^2+3x+2

Answer:

Step 1: Rewrite the rational function as (2x)/(x^2 + 3x + 2)

Step 2: Factor the denominator of the rational function as (x + 2)(x + 1)

Step 3: Rewrite the rational function as (2x)/((x + 2)(x + 1))

Step 4: Use the formula for integration of rational functions: ∫(2x)/((x + 2)(x + 1))dx = (1/2)ln|x + 2| - (1/2)ln|x + 1| + C

Question:

Integrate the function x+2/√4x−x^2

Answer:

Step 1: Rewrite the function in standard form by multiplying both numerator and denominator by the conjugate of the denominator.

x + 2/√4x - x^2 = (x + 2)(√4x + x^2)/(4x - x^4)

Step 2: Use the formula for integration of a rational function to solve the integral.

Integral (x + 2)(√4x + x^2)/(4x - x^4) dx = (1/2)∫(√4x + x^2)dx - (1/4)∫(x^2 + 2x)dx

Step 3: Use the power rule to solve the integrals.

(1/2)∫(√4x + x^2)dx = (1/2)((2/3)x^(3/2) + (1/3)x^(3/2)) + C

(1/4)∫(x^2 + 2x)dx = (1/4)(x^3 + x^2) + C

Step 4: Combine the two integrals.

Integral (x + 2)(√4x + x^2)/(4x - x^4) dx = (1/2)((2/3)x^(3/2) + (1/3)x^(3/2)) + (1/4)(x^3 + x^2) + C

Question:

Integrate the rational function 3x−1/(x−1)(x−2)(x−3)

Answer:

  1. Multiply the numerator and denominator of the rational function by the conjugate of the denominator:

(3x−1)(x−2)(x+3)/(x−1)²(x−2)(x−3)

  1. Expand the numerator and denominator:

3x³-7x²+13x-3/ (x²-4x+3)(x−1)(x−2)(x−3)

  1. Split the fraction into partial fractions:

A/x-1 + B/x-2 + C/x-3 + (3x²-7x+13)/(x²-4x+3)

  1. Find the values of A, B, and C by using the following equations:

A(x²-4x+3) + B(x-1)(x-3) + C(x-1)(x-2) = 3x²-7x+13

A(x²-4x+3) = 3x²-7x+13

A = 1

B(x-1)(x-3) + C(x-1)(x-2) = 0

B(x-1)(x-3) = 0

B = 0

C(x-1)(x-2) = 0

C = 0

  1. Substitute the values of A, B, and C into the partial fractions:

A/x-1 + B/x-2 + C/x-3 + (3x²-7x+13)/(x²-4x+3)

1/x-1 + 0/x-2 + 0/x-3 + (3x²-7x+13)/(x²-4x+3)

  1. Integrate each term:

∫1/x-1 dx = ln|x-1| + C

∫0/x-2 dx = 0 + C

∫0/x-3 dx = 0 + C

∫(3x²-7x+13)/(x²-4x+3) dx = (1/2)ln|x²-4x+3| + C

  1. Combine the terms:

ln|x-1| + 0 + 0 + (1/2)ln|x²-4x+3| + C

Question:

Integrate the rational function x/(x^2+1)(x−1)

Answer:

  1. Rewrite the equation as:

(x/(x^2+1))*(x-1)

  1. Use the product rule to integrate:

(1/(x^2+1))(x-1) + (x/(x^2+1))(1)

  1. Simplify:

(1/(x^2+1))*(x-1) + (x/(x^2+1))

  1. Integrate:

(1/2)*ln(x^2+1) - (1/2)*ln(x-1)

Question:

Integrate the function sec^2x/tan^2x+4

Answer:

  1. Let u = tanx
  2. du = sec^2x dx
  3. ∫sec^2x/tan^2x+4 dx = ∫ (1/u^2+4)du
  4. ∫sec^2x/tan^2x+4 dx = 1/4 ∫ (4/u^2+1)du
  5. ∫sec^2x/tan^2x+4 dx = 1/4 ln|u^2+4| + C
  6. ∫sec^2x/tan^2x+4 dx = 1/4 ln|tan^2x + 4| + C

Question:

∫1+x2 dx is equal to A 2x​1+x2+21​log∣+1+x2∣+C B 2​/3(1+x^2)^2​/3+C C 2​/3x(1+x^2)^3​/2+C D x^2​/2√1+x^2+1​/2x^2log∣x+1+x^2​∣+C

Answer:

A. 2x​1+x2+21​log∣+1+x2∣+C

Question:

Integrate the function 1/√x^2+2x+2

Answer:

Answer: Step 1: Separate the function into two parts: 1/√x and x^2+2x+2 Step 2: Take the integral of the first part: 2*arctan(√x) Step 3: Take the integral of the second part: (1/3)x^3 + x^2 + 2x Step 4: Add the two integrals together: 2arctan(√x) + (1/3)*x^3 + x^2 + 2x

Question:

Integrate the function √x^2+4x+6

Answer:

Answer: Step 1: Rewrite the function into a polynomial form. √x^2+4x+6 = (x+3)^2

Step 2: Use the power rule to integrate the polynomial. Integral of (x+3)^2 dx = (x+3)^3/3 + C

Question:

Integrate the function 1/x−√x

Answer:

  1. ∫1/x−√x dx
  2. ∫1/x dx - ∫√x dx
  3. ln|x| - 2/3x^(3/2) + C

Question:

∫10x^9+10^xloge​10dx​/x^10+10^x equals A 10^x−x^10+C B 10^x+x^10+C C (10^x−x^10)^−1+C D log(10^x+x^10)+C

Answer:

Answer: A 10^x−x^10+C

Question:

Integrate the function 1​/x(logx)^m,x>0,m=1

Answer:

Answer: Step 1: Use integration by parts. Let u = ln(x) and dv = 1/x dx

Step 2: Calculate du and v du = 1/x dx v = -x^-m

Step 3: Calculate the integral Integral of 1/x (ln(x))^m dx = -x^-m ln(x) + m ∫x^-m+1 dx

Step 4: Solve the integral Integral of x^-m+1 dx = x^-m+1/(-m - 1) + C

Question:

Integrate the function x^3sin(tan^−1x^4)/1+x^8

Answer:

  1. First, use the chain rule to rewrite the function:

u = tan⁻¹(x⁴) du = (1/1+x⁴²) dx

x³sin(u) du/dx = x³sin(tan⁻¹(x⁴))(1/1+x⁴²)

  1. Now, integrate the function:

∫x³sin(tan⁻¹(x⁴))(1/1+x⁴²) dx

= ∫x³sin(u)(1/1+x⁴²)du

= -x³cos(u)/1+x⁴² + ∫(3x²cos(u) - x⁴sin(u))/1+x⁴² dx

  1. Finally, use integration by parts to solve the integral:

= -x³cos(u)/1+x⁴² + 3x²sin(u)/1+x⁴² - ∫x²(-sin(u) + x²cos(u))/1+x⁴² dx

= -x³cos(u)/1+x⁴² + 3x²sin(u)/1+x⁴² - x²sin(u)/1+x⁴² + ∫x⁴cos(u)/1+x⁴² dx

= -x³cos(u)/1+x⁴² + 3x²sin(u)/1+x⁴² - x²sin(u)/1+x⁴² + x⁴cos(u)/2 + C

= -x³cos(tan⁻¹(x⁴))/1+x⁴² + 3x²sin(tan⁻¹(x⁴))/1+x⁴² - x²sin(tan⁻¹(x⁴))/1+x⁴² + x⁴cos(tan⁻¹(x⁴))/2 + C

Question:

Integrate the function xsin3x

Answer:

  1. Integrate the function xsin3x

  2. ∫xsin3xdx

  3. ∫xsinx3dx

  4. ∫x(sinx)(3cosx)dx

  5. ∫x(sinx)dx + ∫x(3cosx)dx

  6. ∫x(sinx)dx + 3∫(cosx)dx

  7. (1/2)x²sinx + 3sinx + C

Question:

Integrate the function (x^2+1)logx

Answer:

Answer: Step 1: Use the formula for integration by parts: ∫(u*dv)=uv-∫vdu

Step 2: Let u = x2 + 1 and dv = logx dx

Step 3: Calculate du and v: du = 2x dx and v = x logx - x

Step 4: Substitute the values in the formula: ∫(x2+1)logx dx = (x2+1)(x logx - x) - ∫(2x)(x logx - x)dx

Step 5: Integrate the second part of the equation: ∫(x2+1)logx dx = (x2+1)(x logx - x) - (2x2x logx - x2 - 2∫x logx dx)

Step 6: Integrate the third part of the equation: ∫(x2+1)logx dx = (x2+1)(x logx - x) - (2x2x logx - x2 - 2(x logx2 - 2logx + C))

Step 7: Simplify the equation: ∫(x2+1)logx dx = x2+1)(x logx - x) - 2x2x logx + 2x2 + 2x logx2 - 4logx + C

Question:

Integrate the function 5x+3/√x^2+4x+10

Answer:

  1. Rewrite the fraction as a single fraction: (5x + 3)(√x^2 + 10)/(√x^2 + 4x + 10)

  2. Multiply the numerator and denominator by the conjugate of the denominator: (5x + 3)(x + 5)/x^2 + 10

  3. Rewrite the numerator as a single fraction: (5x^2 + 15x + 15)/x^2 + 10

  4. Use the substitution u = x^2 + 10: (5u - 5x + 15)/u

  5. Integrate the function: (5/2)u^2/2 - (5/2)xu + 15u + C

Question:

Integrate the function √x^2+4x+1

Answer:

  1. Rewrite the function as (x+2)^2: (x+2)^2

  2. Use the formula for the antiderivative of a perfect square: ∫(x+2)^2 dx = (1/3)(x+2)^3 + C

  3. Simplify the answer: (1/3)(x+2)^3 + C

Question:

∫ dx​/x^2+2x+2 equals A xtan^−1(x+1)+C B tan^−1(x+1)+C C (x+1)tan^−1x+C D tan^−1x+C

Answer:

Answer: B tan^−1(x+1)+C

Question:

Integrate the function sec^2(7−4x)

Answer:

  1. Integrate sec^2(7−4x)

  2. Integrate sec^2(u) where u = 7−4x

  3. Integrate 1/cos^2(u) du

  4. Integrate 1/cos(u) du

  5. Let v = cos(u)

  6. Integrate 1/v dv

  7. ∫ 1/v dv = ln|v| + C

  8. ∫ 1/cos(u) du = ln|cos(u)| + C

  9. ∫ sec^2(u) du = ln|cos(u)| + C

  10. ∫ sec^2(7−4x) du = ln|cos(7−4x)| + C

Question:

Integrate the function xlogx

Answer:

  1. Rewrite the function as log(x^x)
  2. Use the integration by parts technique:

Let u = log(x^x) and dv = dx

Then du = (xlnx + 1)dx and v = x

Integrating both sides, we get:

∫u dv = uv - ∫v du

  1. Substitute the values of u, dv, v and du:

∫log(x^x)dx = xlog(x^x) - ∫x(xlnx + 1)dx

  1. Integrate the right hand side:

∫log(x^x)dx = xlog(x^x) - (x^2lnx + x^2)/2 + C

  1. Simplify the result:

∫log(x^x)dx = (x^2lnx + x^2 - 2xlog(x^x))/2 + C

Question:

Integrate the function 1/cos^2x(1−tanx)^2

Answer:

  1. Integrate (1/cos^2x) = sinx/cosx

  2. Integrate (1−tanx)^2 = (1−tanx)(1−tanx) = 1−2tanx+tan^2x

  3. Multiply the two integrals = sinx/cosx - 2sinx/cosx + sinx/cosx tan^2x = sinx/cosx (1 - tan^2x)

  4. Integrate (1 - tan^2x) = x - tanx

  5. Substitute the two integrals = (sinx/cosx)(x - tanx) = sinx - sinxtanx

Question:

Integrate the function √sin2xcos2x

Answer:

Answer: Step 1: Rewrite the function as sin^2xcos^2x Step 2: Use the formula ∫sin^2xcos^2xdx = (1/2)∫(1-cos2x)dx Step 3: Integrate (1-cos2x) using the formula ∫(1-cos2x)dx = x - (1/2)sin2x Step 4: Substitute the result from Step 2 into the original equation Step 5: Final answer: (1/2)x - (1/4)sin2x

Question:

Integrate the function e^x(1​/x−1​/x^2)

Answer:

Step 1: Apply the power rule for integration.

Integral of e^x(1/x - 1/x^2)dx = e^x(ln|x| - 1/x) + C

Question:

∫dx​/√9x−4x^2 equals A 1​/9sin^−1(9x−8/8​)+C B 1​/2sin^−1(8x−9/9​)+C C 1​/3sin^−1(9x−8/8​)+C D 1​/2sin^−1(9x−8/9​)+C

Answer:

Answer: C

Step 1: Rewrite the integral as ∫dx/√(9x - 4x²).

Step 2: Complete the square to get ∫dx/√(9x - 4x²) = ∫dx/√(9(x - 8/9))

Step 3: Substitute u = 9x - 8 to get ∫dx/√(9x - 4x²) = 1/9∫du/√u.

Step 4: Use the substitution rule to get ∫dx/√(9x - 4x²) = 1/9∫du/√u = 1/9sin^−1(u/9)+C.

Step 5: Substitute u = 9x - 8 to get ∫dx/√(9x - 4x²) = 1/9sin^−1(9x - 8/9)+C.

Therefore, the answer is C.

Question:

Integrate the function 1/√7−6x−x^2

Answer:

  1. Rewrite the function in standard form: f(x) = 1/√7 - 6x - x^2

  2. Integrate with respect to x: ∫f(x)dx = ∫(1/√7 - 6x - x^2)dx

  3. Use the power rule: ∫x^n dx = (x^(n+1))/(n+1)

  4. Apply the power rule: ∫(1/√7 - 6x - x^2)dx = (1/√7x - 3x^2 - x^3/3) + C

  5. The answer is: (1/√7x - 3x^2 - x^3/3) + C

Question:

Integrate the function 1/√(2−x)^2+1

Answer:

Answer: Step 1: Rewrite the function as 1/[(√2 - x)(√2 + x)] + 1

Step 2: Rewrite the denominator as a perfect square, (√2 - x)^2 + (√2 + x)^2

Step 3: Rewrite the function as 1/[(√2 - x)^2 + (√2 + x)^2] + 1

Step 4: Take the integral of the function, ∫1/[(√2 - x)^2 + (√2 + x)^2] + 1dx

Step 5: Use the substitution u = √2 - x and du = -dx

Step 6: Substitute u and du into the integral and solve, -1/2 ∫(1/u^2 + 1)du

Step 7: Integrate the function, -1/2(u^-1 + u) + C

Step 8: Substitute back in x and solve, -1/2(√2 - x)^-1 + (√2 - x) + C

Question:

Find an anti derivative (or integral) of the given function by the method of inspection. sin2x−4e^3x

Answer:

Answer:

  1. Rewrite the given function using the sum and difference rules: sin2x−4e^3x = 2sinxcosx−4e^3x
  2. Use the product rule to break down the function: 2sinxcosx−4e^3x = 2sinx(cosx−2e^3x)
  3. Integrate both terms separately: ∫2sinx(cosx−2e^3x)dx = 2∫sinxcosxdx−2∫e^3xdx
  4. Use the integration by parts formula to integrate the first term: 2∫sinxcosxdx = sin2x−2∫sinxsinxdx
  5. Use the substitution rule to integrate the second term: 2∫e^3xdx = 2e^3x
  6. Combine the two terms to get the anti derivative: sin2x−2∫sinxsinxdx−2e^3x

Question:

Integrate the function sin(ax+b)cos(ax+b)

Answer:

  1. Use the formula ∫sin(u)cos(v)dv = 1/2(sin(u+v) - sin(u-v))

  2. Substitute u = ax + b and v = ax + b:

∫sin(ax+b)cos(ax+b)dv = 1/2(sin(2ax + 2b) - sin(0))

  1. Simplify:

∫sin(ax+b)cos(ax+b)dv = 1/2(sin(2ax + 2b))

Question:

∫(sin^2−cos^2x​/sin^2xcos^2x)dx is equal to A tanx+cotx+C B tanx+cosecx+C C −tanx+cotx+C D tanx+secx+C

Answer:

Answer: C

Step-by-step solution:

Step 1: Rewrite the given integral as

∫(sin^2x - cos^2x)/(sin^2xcos^2x)dx

Step 2: Use the trigonometric identity sin2x = 2sinxcosx to rewrite the integral as

∫(2sinxcosx - cos^2x)/(sin^2xcos^2x)dx

Step 3: Use the trigonometric identity cos2x = cos^2x - sin^2x to rewrite the integral as

∫(-sin^2x)/(sin^2xcos^2x)dx

Step 4: Use the trigonometric identity 1/sin2x = cot2x to rewrite the integral as

∫(-cot2x)dx

Step 5: Integrate the expression to get

-tanx + cotx + C

Question:

​Find the integral of ∫(4e^3x+1)dx

Answer:

Answer:

Step 1: Rewrite the integral as: ∫4e^3x dx + ∫1 dx

Step 2: Integrate the first term: ∫4e^3x dx = (1/3)e^3x + C

Step 3: Integrate the second term: ∫1 dx = x + C

Step 4: Combine the two results: (1/3)e^3x + x + C

Question:

Integrate the function x−1/√x^2−1

Answer:

Answer: Step 1: Rewrite the function as (x-1)/(x+1)(x-1) Step 2: Factor the denominator to get (x-1)(x+1)/(x+1)(x-1) Step 3: Use the substitution u = x+1 Step 4: Rewrite the function as u-2/u^2 Step 5: Integrate the function to get 1/2u + C, where C is a constant. Step 6: Substitute x+1 for u to get 1/2(x+1) + C

Question:

Find the integrals of the functions sinxsin2xsin3x

Answer:

Answer:

  1. Integrate sin x: ∫sinx dx = -cosx + C
  2. Integrate sin2x: ∫sin2x dx = -1/2 cos2x + C
  3. Integrate sin3x: ∫sin3x dx = -1/3 cos3x + C

Therefore, the integral of sinxsin2xsin3x is ∫sinxsin2xsin3x dx = (-cosx)(-1/2 cos2x)(-1/3 cos3x) + C = 1/6 cosxcos2xcos3x + C

Question:

Find the integrals of the functions sin4xsin8x

Answer:

  1. Use the identity sinA sinB = (1/2) [cos(A-B) - cos(A+B)]

  2. Integrate both sides with respect to x

  3. Integrate the left side using the standard formula for the integral of a sine function: ∫sinA dx = -cosA + C

  4. Integrate the right side using the standard formula for the integral of a cosine function: ∫cosA dx = sinA + C

  5. Substitute the identity into the integrals and simplify

  6. Combine the constants of integration and simplify -cos(4x)sin(8x) + sin(4x)cos(8x) + C

Question:

If the integrals of the function sin^2x​/1+cosx is ax+bsinx.Find a+b.

Answer:

Step 1: Integrate sin2x / 1 + cosx Step 2: a sinx + b cosx + c Step 3: Set c = 0 Step 4: Compare the coefficients of sinx and cosx Step 5: a + b = 0 Step 6: Thus, a + b = 0

Question:

Find the integral of (x^3+3x+4​/∫x)dx

Answer:

  1. Rewrite the integral as ∫(x^3+3x+4)dx

  2. Use the power rule to integrate ∫x^3dx + ∫3xdx + ∫4dx

  3. Solve each integral 1/4x^4 + x^2 + 4x + C

  4. The final answer is 1/4x^4 + x^2 + 4x + C

Question:

Integrate the function xcos^−1x

Answer:

  1. Rewrite the function as cos^−1x/x
  2. Use integration by parts with u = cos^−1x and dv = 1/x
  3. du = -1/(x√(1-x2)) and v = ln|x|
  4. Integrate: cos^−1xln|x| - ∫1/x(-(1/(x√(1-x2))))dx
  5. Use integration by parts again with u = 1/x and dv = -1/(x√(1-x2))
  6. du = -1/(x2) and v = -(1/2)ln(1-x2)
  7. Integrate: cos^−1xln|x| - (1/2)ln(1-x2) + ∫(1/(x2))(1/(2√(1-x2)))dx
  8. Integrate: cos^−1xln|x| - (1/2)ln(1-x2) + (1/2)√(1-x2) + C

Question:

Integrate the function √1−4x−x^2

Answer:

  1. Rewrite the function as (1 - x)^(1/2) - x^2

  2. Integrate (1 - x)^(1/2) using u-substitution: Let u = 1 - x du = -dx

  3. Integrate -x^2 using the power rule: -x^2 –> -1/3x^3

  4. Substitute u back in: -1/3(1 - x)^3

  5. The final answer is -1/3(1 - x)^3

Question:

Integrate the rational function x^3+x+1/x^2−1

Answer:

  1. Rewrite the rational function as (x^3 + x + 1)(x^2 + 1)^-1

  2. Use the formula for integrating a rational function: Integral (f/g)dx = Integral fdx/g - Integral (f’g - fg’)/g^2 dx

  3. Integrate fdx/g Integral (x^3 + x + 1)dx/ (x^2 + 1) = (x^4/4 + x^2/2 + x) / (x^2 + 1)

  4. Integrate (f’g - fg’)/g^2 dx Integral (3x^2 - (x^3 + x + 1))(x^2 + 1)^-2 dx = -(x^4/4 + x^2/2 + x) / (x^2 + 1)

  5. Add the two integrals together: Integral (x^3 + x + 1)dx/ (x^2 + 1) + Integral (3x^2 - (x^3 + x + 1))(x^2 + 1)^-2 dx = 0

Question:

Find an anti derivative (or integral) of the given function by the method of inspection. (ax+b)^2

Answer:

Answer: Step 1: Recognize that the given function is in the form (ax+b)^2, which can be written as a^2x^2 + 2abx + b^2.

Step 2: Apply the method of inspection to determine the anti derivative. The anti derivative of a^2x^2 is (1/3)a^2x^3, the anti derivative of 2abx is (1/2)abx^2, and the anti derivative of b^2 is b^2x.

Step 3: Combine the terms to obtain the anti derivative. The anti derivative of (ax+b)^2 is (1/3)a^2x^3 + (1/2)abx^2 + b^2x.

Question:

Integrate the function e^x(1+sinx​/1+cosx)

Answer:

Answer: Step 1: Rewrite the function in terms of sin2x and cos2x e^x(1+sinx)/(1+cosx) = e^x(1+sin2x/2)/(1+cos2x/2)

Step 2: Use the substitution u = sin2x e^x(1+sin2x/2)/(1+cos2x/2) = e^x(1+u/2)/(1+√(1-u^2)/2)

Step 3: Integrate ∫e^x(1+u/2)/(1+√(1-u^2)/2)du = 2/3e^x(u+2√(1-u^2)-3ln(1+√(1-u^2))+C

Question:

Find an anti derivative (or integral) of the given function by the method of inspection. e^2x

Answer:

  1. First, determine if the function is in the form of a polynomial. Since e^2x is an exponential function, it is not in the form of a polynomial.

  2. Therefore, use the method of inspection to find the anti derivative of e^2x.

  3. To do this, take the natural logarithm of both sides of the equation.

  4. This gives us: ln(e^2x) = ln(y).

  5. Then, use the power rule for logarithms to solve for y: y = 2x*e^2x.

  6. Finally, the anti derivative of e^2x is 2x*e^2x.

Question:

∫e^x(1+x)​/cos^2(e^xx)dx equals A −cot(ex^x)+C B tan(xe^x)+C C tan(e^x)+C D cot(e^x)+C

Answer:

Answer: B tan(xe^x)+C

Question:

Find the integral of the function cos2x/(cosx+sinx)^2

Answer:

Answer: Step 1: Rewrite the function as (1-sinx^2)/(cosx+sinx)^2

Step 2: Take the derivative of the denominator: (cosx+sinx)^2 = 2cosxsinx

Step 3: Rewrite the function as (1-sinx^2)/2cosxsinx

Step 4: Take the derivative of the numerator: -2sinx

Step 5: Rewrite the function as -sinx/2cosxsinx

Step 6: Integrate with respect to x: -1/2ln(cosx+sinx)+C

Question:

Integrate the function sinx/(1+cosx)^2

Answer:

Step 1: Rewrite the function using the identity sinx = (1+cosx) - (1-cosx) sinx/(1+cosx)^2 = (1+cosx - (1-cosx))/(1+cosx)^2

Step 2: Rewrite the denominator using the identity (1+cosx)^2 = 1 + 2cosx + cos^2x sinx/(1+cosx)^2 = (1+cosx - (1-cosx))/(1 + 2cosx + cos^2x)

Step 3: Rewrite the numerator using the identity 1+cosx = 2cos^2x/2 sinx/(1+cosx)^2 = (2cos^2x/2 - (1-cosx))/(1 + 2cosx + cos^2x)

Step 4: Factor out the common term 2cos^2x/2 from the numerator sinx/(1+cosx)^2 = (2cos^2x/2)(1/(1 + 2cosx + cos^2x) - (1-cosx)/(2cos^2x/2))

Step 5: Simplify the expression sinx/(1+cosx)^2 = (1/(1 + 2cosx + cos^2x) - (1-cosx)/(2cos^2x))

Step 6: Integrate both sides ∫sinx/(1+cosx)^2dx = ∫(1/(1 + 2cosx + cos^2x) - (1-cosx)/(2cos^2x))dx

Step 7: Solve the integrals on the right side ∫sinx/(1+cosx)^2dx = (1/2)ln|1 + 2cosx + cos^2x| - (1/2)ln|2cos^2x| - tanx + C

Question:

Integrate the rational function x/(x−1)^2(x+2)

Answer:

  1. Integrate the rational function (1/x) * (1/(x-1)^2) * (1/(x+2))

  2. Integrate (1/x) ln|x| + C

  3. Integrate (1/(x-1)^2) 1/(x-1) + C

  4. Integrate (1/(x+2)) ln|x+2| + C

  5. Combine the answers ln|x| + 1/(x-1) + ln|x+2| + C

Question:

Integrate the function x^3e^x

Answer:

Answer:

  1. Take the antiderivative of x^3: ∫x^3dx = (1/4)x^4 + C

  2. Take the antiderivative of e^x: ∫e^xdx = e^x + C

  3. Multiply the two antiderivatives together: (1/4)x^4e^x + C

  4. Take the antiderivative of the product: ∫(1/4)x^4e^xdx = (1/4)x^4e^x + C

Question:

ntegrate the function √1+x^2/9

Answer:

Answer: Step 1: Integrate (1+x^2)^(1/2) with respect to x.

Step 2: Use the power rule to integrate.

Step 3: (1+x^2)^(1/2) = u, u = (1+x^2)^(1/2)

Step 4: du/dx = (1/2)(1+x^2)^(-1/2)(2x)

Step 5: Integrate (1+x^2)^(1/2) with respect to x

Step 6: ∫(1+x^2)^(1/2) dx = ∫u du

Step 7: = (1/2)u^2 + c

Step 8: = (1/2)(1+x^2) + c

Step 9: Integrate (√1+x^2)/9 with respect to x

Step 10: Divide (1+x^2)^(1/2) by 9

Step 11: = (1/9)(1+x^2)^(1/2)

Step 12: Integrate (1/9)(1+x^2)^(1/2) with respect to x

Step 13: = (1/9)(1/2)(1+x^2) + c

Step 14: = (1/18)(1+x^2) + c

Hence, the answer is ∫ (√1+x^2)/9 dx = (1/18)(1+x^2) + c

Question:

Integrate the function 1/√(x−a)(x−b)

Answer:

  1. Separate the function into two parts: 1/√(x-a) and 1/(x-b)

  2. Integrate each part separately: ∫1/√(x-a)dx = 2√(x-a) + C ∫1/(x-b)dx = ln|x-b| + C

  3. Combine the two parts: 2√(x-a) + ln|x-b| + C

Question:

Integrate the function 1/√9−25x^2

Answer:

Answer: Step 1: Rewrite the function as: 1/√(9 - 25x^2)

Step 2: Use the substitution u = 9 - 25x^2

Step 3: Rewrite the function as: 1/√u

Step 4: Integrate the function using the following formula: 2/3u^(3/2) + C

Question:

​Integrate the function xe^x/(1+x)^2

Answer:

Answer:

Step 1: Rewrite the function as xe^x/[(1+x) (1+x)]

Step 2: Integrate xe^x with respect to x: ∫xe^x dx = e^x(x + 1)

Step 3: Integrate 1/(1+x) with respect to x: ∫1/(1+x) dx = ln(1+x)

Step 4: Integrate 1/(1+x)^2 with respect to x: ∫1/(1+x)^2 dx = 1/[(1+x)(ln(1+x))]

Step 5: Multiply the results: e^x(x + 1) x 1/[(1+x)(ln(1+x))]

Step 6: Simplify the expression: e^x(x + 1) / ln(1+x)

Question:

Integrate the function cos√x/√x

Answer:

  1. u = √x
  2. du = (1/2)x^(-1/2)dx
  3. Integral of cosu*du = sinu + C
  4. Integral of cos√x/√x = sin√x + C

Question:

​∫x^2e^x^3 dx equals A 1/3​e^x^3+C B 1/3​e^x^2+C C 1/2​e^x^3+C D e^−x^2+C

Answer:

Answer: C

Solution:

Step 1: Use the integration by parts formula.

Integration by parts formula: ∫uvdx = uv - ∫vdu

Let u = x^2 and dv = e^x^3 dx

Step 2: Calculate du and v.

du = 2x dx

v = 1/3e^x^3

Step 3: Substitute the values of u, du, and v in the integration by parts formula.

∫x^2e^x^3 dx = x^2*(1/3e^x^3) - ∫(2x)*(1/3e^x^3) dx

Step 4: Integrate the second term.

∫(2x)*(1/3e^x^3) dx = 2/3e^x^3 + C

Step 5: Substitute the value of the second term in the first equation.

∫x^2e^x^3 dx = x^2*(1/3e^x^3) - (2/3e^x^3 + C)

Step 6: Simplify the equation.

∫x^2e^x^3 dx = 1/3e^x^3 + C

Question:

Integrate the rational function 5x/(x+1)(x^2−4)

Answer:

Step 1: Multiply 5x by the conjugate of the denominator, (x−2)(x+2).

Step 2: Simplify the denominator, (x+1)(x−2)(x+2) = x^3 + x^2 - 4x - 8.

Step 3: Use the method of partial fractions to decompose the rational expression.

Step 4: Integrate each term in the decomposition separately.

Step 5: Add the resulting integrals together to obtain the final answer.

Answer: 5/2ln|x+2| - 5/2ln|x-2| - 5/3x^3 + 5/2x^2 + 10x + C

Question:

Integrate the function e^2xsinx

Answer:

  1. ∫e^2xsinx dx

  2. ∫e^2x sinx dx

  3. u = e^2x, du = 2e^2x dx

  4. dv = sinx dx, v = -cosx

  5. ∫e^2x sinx dx = -e^2x cosx + ∫2e^2x cosx dx

  6. u = e^2x, du = 2e^2x dx

  7. dv = cosx dx, v = sinx

  8. ∫e^2x sinx dx = -e^2x cosx + 2e^2x sinx + C

Question:

Integrate the function xsec^2x

Answer:

Answer:

  1. ∫xsec^2x dx
  2. ∫(sec^2x)dx
  3. ∫(1/cos^2x)dx
  4. ∫(tan^2x + 1)dx
  5. ∫(sec^2x tan^2x + sec^2x)dx
  6. ∫sec^3x tan^2x + ∫secx dx
  7. 1/2 sec^2x tanx + tanx + C

Question:

Find the integral of ∫secx(secx+tanx)dx

Answer:

  1. ∫secx(secx+tanx)dx

  2. ∫secxsecxdx + ∫secxtandx

  3. ∫sec²xdx + ∫secxtandx

  4. ∫sec²xdx + ∫sec²xdx - ∫sec²xdx

  5. ∫sec²xdx + ∫sec²xdx - ∫tan²xdx

  6. tanx + secx - ∫tan²xdx

  7. tanx + secx - ∫sec²tanx dx

  8. tanx + secx - ∫secx dx + ∫tanx dx

  9. tanx + secx - ln|secx + tanx| + tanx + C

Question:

Find the integral of ∫(ax^2+bx+c)dx

Answer:

Answer: Step 1: Rewrite the equation as ∫ax^2 + bx + c dx.

Step 2: Integrate ax^2.

∫ax^2 dx = (1/3)ax^3 + C

Step 3: Integrate bx.

∫bx dx = (1/2)bx^2 + C

Step 4: Integrate c.

∫c dx = cx + C

Step 5: Combine all the terms.

∫(ax^2 + bx + c)dx = (1/3)ax^3 + (1/2)bx^2 + cx + C

Question:

Find the integrals of the functions cosx/1+cosx

Answer:

  1. Rewrite the function as cosx/(1+cosx) = cosx * 1/(1+cosx)

  2. Use the substitution u = 1 + cosx

  3. du = -sinx dx

  4. Integrate: ∫cosx/(1+cosx)dx = ∫cosx * 1/(1+cosx)dx = ∫cosx * 1/u du = ∫-cosx/u du

  5. Integrate: -∫cosx/u du = -sinx/u + C

  6. Substitute back u = 1 + cosx

  7. -sinx/(1+cosx) + C

Question:

Find the integral of ∫(2x−3cosx+e^x)dx

Answer:

  1. ∫(2x−3cosx+e^x)dx

  2. ∫2xdx − 3∫cosxdx + ∫e^xdx

  3. (1/2)x^2 - 3sinx + e^x + C

Question:

Find the integrals of the function cos2x−cos2α/cosx−cosα

Answer:

Answer:

Step 1: Rewrite the given expression using the identity cos2x = 1 - 2sin2x

cos2x − cos2α/cosx − cosα = (1 - 2sin2x - cos2α)/(cosx − cosα)

Step 2: Rewrite the denominator using the identity cos2α = 1 - 2sin2α

cos2x − cos2α/cosx − cosα = (1 - 2sin2x - (1 - 2sin2α))/(cosx − (1 - 2sin2α))

Step 3: Multiply both numerator and denominator by (cosx + (1 - 2sin2α))

cos2x − cos2α/cosx − cosα = (cosx + (1 - 2sin2α))(1 - 2sin2x - (1 - 2sin2α))/(cos2x - 2cosxsin2α + (1 - 2sin2α)^2)

Step 4: Integrate both sides with respect to x

∫cos2x − cos2α/cosx − cosα dx = ∫(cosx + (1 - 2sin2α))(1 - 2sin2x - (1 - 2sin2α))/(cos2x - 2cosxsin2α + (1 - 2sin2α)^2) dx

Step 5: Solve the integral

∫cos2x − cos2α/cosx − cosα dx = (1/2)ln|cos2x - 2cosxsin2α + (1 - 2sin2α)^2| + C

Question:

Find the integrals of the functions sin2xcos2xsin3x+cos3x

Answer:

Answer:

  1. Integrate sin2xcos2x: ∫sin2xcos2xdx = -1/2cos4x + C

  2. Integrate sin3x: ∫sin3xdx = -1/2cos3x + C

  3. Integrate cos3x: ∫cos3xdx = 1/2sin3x + C

  4. Add the results from steps 1-3: -1/2cos4x - 1/2cos3x + 1/2sin3x + C

Question:

Integrate the function 3x^2/x^6+1

Answer:

Step 1: Rewrite the function as 3x^2/(x^6+1).

Step 2: Use the substitution u = x^6 + 1.

Step 3: Rewrite the function as 3x^2/u.

Step 4: Take the derivative of u with respect to x: du/dx = 6x^5.

Step 5: Multiply the function by du/dx: 3x^2*6x^5/u.

Step 6: Rewrite the function as 18x^7/u.

Step 7: Integrate the function with respect to x: ∫18x^7/u dx.

Step 8: Substitute u = x^6 + 1: ∫18x^7/(x^6+1) dx.

Step 9: Integrate the function: 18/6 (x^6+1)^(1/6) + C, where C is the constant of integration.

Question:

Find the integral of ∫(2x^2−3sinx+5√x)dx

Answer:

  1. Rewrite the integrand using the power rule:

∫(2x^3 - 3cosx + 5x^(1/2))dx

  1. Integrate:

2/4 x^4 - 3/2 sinx + 5/3 x^(3/2) + C

Question:

Find the integral of the function 1/cos(x−a)cos(x−b)

Answer:

  1. Use the substitution rule by setting u = cos(x−a):

∫1/cos(x−a)cos(x−b)dx = ∫1/u(cos(x−b))dx

  1. Use the product rule to break up the integral:

∫1/u(cos(x−b))dx = ∫1/u du + ∫cos(x−b)dx

  1. Integrate the first term:

∫1/u du = ln|u| + C

  1. Integrate the second term:

∫cos(x−b)dx = sin(x−b) + C

  1. Substitute back in the original variable and constants:

ln|cos(x−a)| + sin(x−b) + C

Question:

Integrate the function (1+logx)^2/x

Answer:

  1. Rewrite the function as: (1+lnx)^2/x

  2. Use the power rule to integrate: (1+lnx)^2/x = (1+lnx)^2/x * (1/1+lnx)

  3. Rewrite the function as: (1+lnx)^3/1+lnx

  4. Use the power rule to integrate: (1+lnx)^3/1+lnx = (1+lnx)^3/1+lnx * (1/(3*(1+lnx)^2))

  5. Rewrite the function as: (1+lnx)^3/(3*(1+lnx)^2)

  6. Use the power rule to integrate: (1+lnx)^3/(3*(1+lnx)^2) = (1+lnx)^3/(3*(1+lnx)^2) * (1/(3*(1+lnx)))

  7. Rewrite the function as: (1+lnx)^4/(9*(1+lnx)^3)

  8. Use the power rule to integrate: (1+lnx)^4/(9*(1+lnx)^3) = (1+lnx)^4/(9*(1+lnx)^3) * (1/(4*(1+lnx)^2))

  9. Rewrite the function as: (1+lnx)^5/(36*(1+lnx)^4)

  10. Use the power rule to integrate: (1+lnx)^5/(36*(1+lnx)^4) = (1+lnx)^5/(36*(1+lnx)^4) * (1/(5*(1+lnx)^3))

  11. Rewrite the function as: (1+lnx)^6/(216*(1+lnx)^5)

  12. Use the power rule to integrate: (1+lnx)^6/(216*(1+lnx)^5) = (1+lnx)^6/(216*(1+lnx)^5) * (1/(6*(1+lnx)^4))

  13. Rewrite the function as: (1+lnx)^7/(1296*(1+lnx)^6)

  14. Use the power rule to integrate: (1+lnx)^7/(1296*(1+lnx)^6) = (1+lnx)^7/(1296*(1+lnx)^6) * (1/(7*(1+lnx)^5))

  15. Rewrite the function as: (1+lnx)^8/(7776*(1+lnx)^7)

  16. Use the power rule to integrate: (1+lnx)^8/(7776*(1+lnx)^7) = (1+lnx)^8/(7776*(1+lnx)^7) * (1/(8*(1+lnx)^6))

  17. Rewrite the function as: (1+lnx)^9/(46656*(1+lnx)^8)

  18. Use the power rule to integrate: (1+lnx)^9/(46656*(1+lnx)^8) = (1+lnx)^9/(46656*(1+lnx)^8) * (1/(9*(1+lnx)^7))

  19. Rewrite the function as: (1+lnx)^10/(279936*(1+lnx)^9)

  20. Use the power rule to integrate: (1+lnx)^10/(279936*(1+lnx)^9) = (1+lnx)^10/(279936*(1+lnx)^9) * (1/(10*(1+lnx)^8))

  21. The final answer is: (1+lnx)^11/(2799360*(1+lnx)^10)

Question:

Integrate the function x/e^x^2

Answer:

Step 1: Rewrite the function as xe^(-x^2)

Step 2: Integrate both sides with respect to x:

Step 3: ∫xe^(-x^2)dx

Step 4: Use the integration by parts formula:

Step 5: u = x and dv = e^(-x^2)dx

Step 6: du = dx and v = -1/2e^(-x^2)

Step 7: ∫xe^(-x^2)dx = x(-1/2e^(-x^2)) - ∫(-1/2e^(-x^2))dx

Step 8: Integrate the second term on the right-hand side:

Step 9: ∫(-1/2e^(-x^2))dx = -1/2∫e^(-x^2)dx

Step 10: Use the substitution u = x^2:

Step 11: du = 2xdx and ∫e^(-x^2)dx = 1/2∫e^(-u)du

Step 12: ∫e^(-u)du = -e^(-u)

Step 13: Substitute u = x^2:

Step 14: -e^(-u) = -e^(-x^2)

Step 15: Final answer:

∫xe^(-x^2)dx = x(-1/2e^(-x^2)) + 1/2e^(-x^2)

Question:

Integrate the function 1/1−tanx

Answer:

  1. Use the substitution u = tanx
  2. du = sec^2x dx
  3. ∫1/(1-tanx)dx = ∫1/u du
  4. ∫1/u du = ln|u| + C
  5. ∫1/(1-tanx)dx = ln|tanx| + C

Question:

Integrate the function sin^−1x/√1−x^2

Answer:

  1. Let u = sin^−1x
  2. du = 1/√1−x^2 dx
  3. Integrate u du
  4. ∫udu = u^2/2 + C
  5. ∫sin^−1x/√1−x^2dx = (sin^−1x)^2/2 + C

Question:

Integrate the function (x+1)(x+logx)^2/x

Answer:

Answer: Step 1: Use the product rule to expand the given function: (x + 1)(x + logx)2/x = (x + logx)2 + 2(x + logx) + 1

Step 2: Integrate each term separately: (x + logx)2 = (1/3)(x + logx)3 + C 2(x + logx) = (2/3)(x + logx)3 + C 1 = x + C

Step 3: Add all the terms together to get the final solution: Integral of (x + 1)(x + logx)2/x = (1/3)(x + logx)3 + (2/3)(x + logx)3 + x + C

Question:

Integrate the function tan^−1x

Answer:

  1. Rewrite the function as arctan(x)
  2. Integrate arctan(x) with respect to x
  3. ∫arctan(x)dx = xarctan(x) - ∫1/(1+x^2)dx
  4. ∫1/(1+x^2)dx = ∫1/u du (where u = 1+x^2)
  5. ∫1/u du = ln|u| + c
  6. ∫arctan(x)dx = xarctan(x) - ln|1+x^2| + c

Question:

Integrate the function xcos^−1x/√1−x^2

Answer:

  1. Let u = cos^−1x
  2. du = -1/√1-x^2 dx
  3. ∫ xcos^−1x/√1−x^2 dx
  4. ∫ xdu/√1−x^2
  5. ∫ u/√1−x^2 du
  6. 1/2∫ (u√1−x^2 + x^2√1−x^2) du
  7. 1/2[u√1−x^2 + x^2√1−x^2] + C

Question:

Integrate the function 3x/1+2x^4

Answer:

  1. Rewrite the function as 3x(1+2x^4)^-1

  2. Use the formula ∫u^-1du = ln|u| + C

  3. Integrate the function: ∫3x(1+2x^4)^-1 dx = ln|1+2x^4| + C

Question:

Integrate the function ​1/√8+3x−x^2

Answer:

  1. Separate the function into two parts: 1/√8 + 3x and -x2
  2. Integrate the first part: 2/3√8x + C
  3. Integrate the second part: -1/3x3 + C
  4. Combine the two parts together: 2/3√8x - 1/3x3 + C

Question:

Integrate the function √1+3x−x^2

Answer:

  1. ∫√1+3x−x^2dx
  2. ∫(1+3x−x^2)^(1/2)dx
  3. Let u = 1+3x−x^2
  4. du = 3−2x dx
  5. ∫u^(1/2)du
  6. 2/3u^(3/2) + C
  7. 2/3(1+3x−x^2)^(3/2) + C

Question:

Integrate the function √x^2+3x

Answer:

  1. Rewrite the function as x^2 + 3x = (x + 3)^2 - 9

  2. Integrate (x + 3)^2 - 9 dx

  3. Integrate (x + 3)^2 dx

  4. ∫(x + 3)^2 dx = (1/3)(x + 3)^3 + C

Question:

Integrate the function x^2logx

Answer:

Step 1: Rewrite the function in a form that can be integrated: x^2logx = x^2lnx

Step 2: Integrate the function: ∫x^2lnx dx = x^3(lnx - 1) + C

Question:

Integrate the function xlog2x

Answer:

Step 1: Rewrite the function as log2x + x*(d/dx of log2x)

Step 2: Integrate both sides of the equation with respect to x

Step 3: Calculate the integral of log2x

Integral of log2x = x*log2x - (1/ln(2))*x2

Step 4: Calculate the integral of (d/dx of log2x)

Integral of (d/dx of log2x) = x

Step 5: Substitute the integrals into the equation

x*log2x - (1/ln(2))*x2 + x = Integral

Step 6: Simplify the equation

Integral = x*log2x - (1/ln(2))*x2 + x

Question:

Integrate the function (sin^−1x)^2

Answer:

  1. Rewrite the function as (sin^-1x)^2 = (sin^2x)^-1

  2. Take the inverse of both sides: (sin^-1x)^2 = (sin^2x)^-1 → (sin^2x) = (sin^-1x)^2

  3. Take the derivative of both sides with respect to x: (sin^2x)’ = (sin^-1x)^2'

  4. Simplify the derivative on the left side: (sin^2x)’ = 2sinxcosx

  5. Simplify the derivative on the right side: (sin^-1x)^2’ = 2(sin^-1x)(cos^-1x)

  6. Set the derivatives equal to each other and solve for cos^-1x: 2sinxcosx = 2(sin^-1x)(cos^-1x) → cos^-1x = (sinx)/(sin^-1x)

  7. Integrate both sides with respect to x: ∫cos^-1x dx = ∫(sinx)/(sin^-1x) dx

  8. Use the substitution u = sin^-1x: ∫cos^-1x dx = ∫du/u dx

  9. Integrate both sides: ∫cos^-1x dx = ln|u| + C

  10. Substitute back in u = sin^-1x: ∫cos^-1x dx = ln|sin^-1x| + C

Question:

Integrate the rational function: 1/x^2−9

Answer:

Answer: Step 1: Separate the fraction into two separate fractions: 1/x^2 and -9. Step 2: Integrate each fraction separately. Step 3: For the first fraction, use the power rule to integrate: ∫1/x^2dx = -1/x + C Step 4: For the second fraction, use the constant rule to integrate: ∫-9dx = -9x + C Step 5: Combine the two results to get the final answer: -1/x - 9x + C

Question:

Integrate the rational function x/(x+1)(x+2)

Answer:

Step 1: Use the method of partial fraction decomposition to split the rational function into simpler fractions.

x/(x+1)(x+2) = A/(x+1) + B/(x+2)

Step 2: Solve for the constants A and B by multiplying both sides by (x+1)(x+2).

A(x+2) + B(x+1) = x

Step 3: Solve for A by setting x = -2 and substituting into the equation.

A(-2+2) + B(-2+1) = -2 A(0) + B(-1) = -2 A = 2

Step 4: Solve for B by setting x = -1 and substituting into the equation.

2(-1+2) + B(-1+1) = -1 2(-1) + B(0) = -1 B = 1

Step 5: Substitute the values of A and B into the partial fraction decomposition.

x/(x+1)(x+2) = 2/(x+1) + 1/(x+2)

Step 6: Integrate both sides of the equation.

∫x/(x+1)(x+2)dx = ∫2/(x+1)dx + ∫1/(x+2)dx

Step 7: Solve each integral.

∫2/(x+1)dx = 2 ln|x+1| + C1 ∫1/(x+2)dx = ln|x+2| + C2

Step 8: Combine the two integrals.

∫x/(x+1)(x+2)dx = 2 ln|x+1| + ln|x+2| + C

Step 9: Simplify the equation.

∫x/(x+1)(x+2)dx = ln|(x+1)(x+2)| + C

Question:

Integrate the rational function 2x−3/(x^2−1)(2x+3)

Answer:

  1. Rewrite the numerator and denominator as the product of two linear factors: Numerator: 2x−3 = (2x−3)(1) Denominator: x^2−1 = (x−1)(x+1)

  2. Rewrite the rational function as the sum of two fractions: 2x−3/(x^2−1)(2x+3) = (2x−3)(1)/((x−1)(x+1))(2x+3) + (2x−3)(2x+3)/((x−1)(x+1))(2x+3)

  3. Integrate each fraction separately: (2x−3)(1)/((x−1)(x+1))(2x+3) = 1/2 ln|x+1| - 1/2 ln|x-1| (2x−3)(2x+3)/((x−1)(x+1))(2x+3) = x + 3/2 ln|x+1| - 3/2 ln|x-1|

  4. Add the two results together to get the full answer: Integral of 2x−3/(x^2−1)(2x+3) = x + 1/2 ln|x+1| - 1/2 ln|x-1|

Question:

Integrate the function √1−4x^2

Answer:

Answer: Step 1: Rewrite the function as 1 - 4x^2 = (1 - 2x)(1 + 2x)

Step 2: Use the formula for integration of a product of two terms: ∫(f(x)g(x))dx = ∫f(x)dx∫g(x)dx

Step 3: Integrate each term separately: ∫(1 - 2x)dx = x - x^2 + C ∫(1 + 2x)dx = x + x^2 + C

Step 4: Combine the two terms: x - x^2 + C + x + x^2 + C = 2x + 2C

Question:

Integrate the function x​/√x+4,x>0

Answer:

Answer: Step 1: Rewrite the integrand as a fraction: x/(x+4)1/2

Step 2: Use the power rule to integrate: (2/3)x3/2/(x+4)1/2 + C

Step 3: Simplify the result: (2/3)(x3/2 + 4x1/2) + C

Question:

Integrate the function tan^2(2x−3)

Answer:

  1. Use the formula for integration of tan^2(u): ∫tan^2(u)du = (1/2)tan(u) - (1/2)ln|sec(u)+tan(u)| + C

  2. Substitute 2x−3 for u: ∫tan^2(2x−3)dx = (1/2)tan(2x−3) - (1/2)ln|sec(2x−3)+tan(2x−3)| + C

  3. Simplify the equation: ∫tan^2(2x−3)dx = (1/2)tan(2x−3) - (1/2)ln|sec(2x−3)+tan(2x−3)| + C

Question:

Integrate the function (x^3−1)^1​/3x^5

Answer:

  1. Rewrite the function using the power rule: x^3−1 = (x^2)^1/2⋅x−1 = (x^2)^1/2⋅(x^1−1)

  2. Apply the power rule to the first term: (x^2)^1/2⋅x−1 = (1/2)x^(2+1)−x^1

  3. Apply the power rule to the second term: (1/2)x^(2+1)−x^1 = (1/2)x^3−x^1

  4. Integrate the function: (1/2)x^3−x^1 = (1/2)x^4−x^2 + C

Question:

Integrate the function xtan^−1x

Answer:

  1. Rewrite the function as tan^-1(x) / x

  2. Use the formula for integration of the form (1/u) du = ln|u| + c

  3. Integrate tan^-1(x) / x = ln|x tan^-1(x)| + c

Question:

Integrate the function 1/√(x−1)(x−2)

Answer:

Answer:

  1. First, rewrite the function in terms of the standard form of a fraction: 1/√(x−1)(x−2) = (1/√(x−1))/(x−2)

  2. Use the power rule to expand the denominator: (1/√(x−1))/(x−2) = (1/√(x−1))/(x^2-2x)

  3. Use the power rule to expand the numerator: (1/√(x−1))/(x^2-2x) = (1/x√(x−1))/(x^2-2x)

  4. Multiply the numerator and denominator by √(x−1) to clear the fraction: (1/x√(x−1))/(x^2-2x) = (1/x^2(x−1))/(x^2-2x)√(x−1)

  5. Integrate both sides using the substitution u = x−1: ∫(1/x^2(x−1))/(x^2-2x)√(x−1)dx = ∫(1/u^2)du

  6. Solve the integral on the right side: ∫(1/u^2)du = -1/u

  7. Substitute u = x−1 back into the equation: ∫(1/x^2(x−1))/(x^2-2x)√(x−1)dx = -1/(x−1)

  8. The final answer is: ∫(1/√(x−1)(x−2))dx = -1/(x−1)

Question:

​Integrate the function 1/√9x^2+6x+5

Answer:

Answer:

Step 1: Rewrite the function as: 1/√(9x^2 + 6x + 5)

Step 2: Multiply the denominator by the conjugate of the denominator to get a perfect square: 1/[√(9x^2 + 6x + 5) * √(9x^2 + 6x + 5)]

Step 3: Rewrite the function as: 1/[(9x^2 + 6x + 5)^2]

Step 4: Rewrite the function as: 1/[9(x^2 + 2/3x + 5/9)]

Step 5: Rewrite the function as: 1/(9x^2 + 2/3x + 5/9)

Step 6: Integrate using the power rule: -1/3 (x^3 + 2/3x^2 + 5/9x) + C

Question:

​Find an anti derivative (or integral) of the given function by the method of inspection.cos3x

Answer:

Answer:

Step 1: Rewrite the given function as a sum of sines and cosines. cos3x = 4cos^3x - 3cosx

Step 2: Use the formula for anti-derivatives of sums of sines and cosines. ∫cos3x dx = ∫(4cos^3x - 3cosx) dx

Step 3: Integrate the individual terms. ∫cos3x dx = 4∫cos^3x dx - 3∫cosx dx

Step 4: Use the formula for the anti-derivative of a cosine cubed. ∫cos3x dx = 4(1/4sin^4x) - 3(sin x) + C

Step 5: Simplify the expression. ∫cos3x dx = sin^4x - 3sin x + C

Question:

Find an anti derivative (or integral) of the given function by the method of inspection.sin2x

Answer:

  1. Rewrite the given function as 2sin xcos x.

  2. Use the identity sin2A = 2sin A cos A to rewrite the function as sin2x.

  3. Use the identity sin2A = 1 - cos2A to rewrite the function as 1 - cos2x.

  4. Use the identity cos2A = (1 + cos2A)/2 to rewrite the function as (1 + cos2x)/2.

  5. Integrate both sides with respect to x.

  6. On the left side, the integral of 1 is x. On the right side, the integral of (1 + cos2x)/2 is (x + sin2x)/2.

  7. The anti derivative of sin2x is (x + sin2x)/2.

Question:

Integrate the rational function 1/(e^x−1)

Answer:

Answer:

  1. Rewrite the function as 1/e^x - 1/1
  2. Integrate 1/e^x using the formula ∫1/e^x dx = -ln(e^x)
  3. Integrate 1/1 using the formula ∫1/1 dx = x
  4. Add the two integrals together to get the answer -ln(e^x) + x

Question:

Integrate the rational function x/(x−1)(x−2)(x−3)

Answer:

  1. Rewrite the rational function as a sum of partial fractions: x/(x−1)(x−2)(x−3) = A/(x−1) + B/(x−2) + C/(x−3)

  2. To solve for A, B, and C, use the following equation: A(x−2)(x−3) + B(x−1)(x−3) + C(x−1)(x−2) = x

  3. Substitute x = 1, 2, and 3 into the equation to solve for A, B, and C: A(2)(3) + B(1)(3) + C(1)(2) = 1 6A + 3B + 2C = 1

  4. Solve for A, B, and C: A = 1/6 B = -1/2 C = 1/3

  5. Substitute A, B, and C into the original equation: x/(x−1)(x−2)(x−3) = 1/6(1/(x−1)) - 1/2(1/(x−2)) + 1/3(1/(x−3))

  6. Simplify: x/(x−1)(x−2)(x−3) = 1/(6(x−1)) - 1/(2(x−2)) + 1/(3(x−3))

  7. Integrate both sides of the equation: ∫x/(x−1)(x−2)(x−3) dx = ∫1/(6(x−1)) - 1/(2(x−2)) + 1/(3(x−3)) dx

  8. Solve the integrals: ∫x/(x−1)(x−2)(x−3) dx = 1/6ln|x−1| - 1/2ln|x−2| + 1/3ln|x−3| + C

Question:

Integrate the rational function 1/x(x^n+1)

Answer:

  1. Use the substitution u = x^n + 1.

  2. Integrate 1/u du.

  3. Substitute du back in terms of dx.

  4. Integrate 1/x dx.

  5. Substitute x^n + 1 back in terms of u.

  6. Simplify the expression.

Question:

Integrate the function 2x/1+x^2

Answer:

  1. First, use the substitution u = x^2, so that du = 2x dx

  2. Next, rewrite the integral as ∫2x/1+x^2 dx = ∫2u/(1+u) du

  3. Finally, integrate both sides of the equation to get: ∫2u/(1+u) du = (2/3)ln|1+u| + C

Question:

Find the integral of ∫x^2(1−1​/x^2)dx

Answer:

  1. ∫x^2(1−1​/x^2)dx
  2. ∫x^2 - 1/x^2 dx
  3. ∫x^2dx - ∫1/x^2dx
  4. (1/3)x^3 - (1/x) + C

Question:

Integrate the function 5x−2/1+2x+3x^2

Answer:

Answer: Step 1: Rewrite the function as 5x/(1 + 2x + 3x^2)

Step 2: Use partial fractions to separate the function into two fractions: 5x/(1 + 2x + 3x^2) = (A/1 + 2x) + (B/3x^2)

Step 3: Solve for A and B by multiplying both sides of the equation by (1 + 2x + 3x^2): 5x = A(1 + 2x + 3x^2) + B(1 + 2x)

Step 4: Solve for A and B by equating the coefficients of each term: A = 5 B = -2

Step 5: Substitute A and B into the original equation: 5x/(1 + 2x + 3x^2) = (5/1 + 2x) + (-2/3x^2)

Step 6: Integrate both sides of the equation: ∫5x/(1 + 2x + 3x^2) dx = ∫(5/1 + 2x) + (-2/3x^2) dx

Step 7: Integrate each side of the equation separately: ∫5x/(1 + 2x + 3x^2) dx = (5/2)ln|1 + 2x| + (2/3)ln|3x^2| + C, where C is the constant of integration.

Question:

Integrate the function 2cosx−3sinx/6cosx+4sinx

Answer:

  1. Rewrite the function as (2cosx−3sinx)/(6cosx+4sinx)

  2. Multiply the numerator and denominator by the conjugate of the denominator: (2cosx−3sinx)(6cosx−4sinx)/(6cosx+4sinx)(6cosx−4sinx)

  3. Expand and simplify the numerator: 12cos^2x−20cosxsinx−18sinx^2

  4. Rewrite the denominator as 36cos^2x−16sinx^2

  5. Divide the numerator by the denominator: (12cos^2x−20cosxsinx−18sinx^2)/(36cos^2x−16sinx^2)

  6. Use the trigonometric identity sin^2x+cos^2x=1 to simplify the denominator: (12cos^2x−20cosxsinx−18sinx^2)/(36−16sin^2x)

  7. Use the trigonometric identity 1−sin^2x=cos^2x to simplify the denominator: (12cos^2x−20cosxsinx−18sinx^2)/(36cos^2x)

  8. Integrate the function: (1/36)∫(12cos^2x−20cosxsinx−18sinx^2)dx

  9. Integrate each term separately: (1/36)∫12cos^2xdx−(1/36)∫20cosxsinxdx−(1/36)∫18sinx^2dx

  10. Solve each integral: (1/36)(3sin x−10cos x+6sinxcosx)+C

Question:

Find the integrals of the functions sin^4x

Answer:

Answer:

  1. Rewrite the function as (sin^2x)^2
  2. Use the formula for the integral of (u^n) = (u^(n+1))/(n+1), where n is a constant
  3. Integrate (sin^2x)^2 = (sin^4x)/4 + C, where C is a constant

Question:

Integrate the function x+2/√x^2−1

Answer:

Step 1: Separate the function into two parts: x and 2/√x^2−1

Step 2: Integrate the first part, x, which is x^2/2

Step 3: Integrate the second part, 2/√x^2−1, which is 2*arcsin(x)

Question:

Find the integral of ∫√x(3x^2+2x+3)dx

Answer:

Answer:

  1. Rewrite the integrand as a single fraction: ∫(3x^3+2x^2+3x)√x dx

  2. Use the substitution u = x^2: ∫(3u^2+2u+3)√u du

  3. Rewrite the integrand as a single fraction: ∫(3u^2+2u+3)du

  4. Integrate: (3/5u^5/2)+ (1/2u^2)+ (3u) + C

Question:

∫dx​/sin^2xcos^2x equals A tanx+cotx+C B tanx−cotx+C C tanxcotx+C D tanx−cot2x+C

Answer:

Answer: A

Step-by-step solution:

  1. Begin by using the identity sin2x + cos2x = 1
  2. ∫dx/sin2xcos2x = ∫dx/(1 - sin2x)
  3. Use the substitution u = sinx
  4. du = cosx dx
  5. ∫dx/(1 - sin2x) = ∫du/(1 - u2)
  6. Integrate: ∫du/(1 - u2) = tan-1u + C
  7. Substitute back: tan-1(sinx) + C = tanx + C

Question:

Integrate the rational function cosx/(1−sinx)(2−sinx)

Answer:

  1. Rewrite the function as a sum of two fractions: cosx/(1−sinx) + cosx/(2−sinx)

  2. Use the substitution u = sinx: cosx/(1−u) + cosx/(2−u)

  3. Integrate each fraction separately: ∫cosx/(1−u) du = ln|1−u| + C1 ∫cosx/(2−u) du = ln|2−u| + C2

  4. Substitute u = sinx back into the integrals: ln|1−sinx| + C1 + ln|2−sinx| + C2

Question:

Integrate the function 6x+7/√(x−5)(x−4)

Answer:

  1. Rewrite the function as 6x+7/[(x-5)(√x-4)]
  2. Use the product rule to rewrite as 6/√(x-4) + 7(√x-4)/[(x-5)(√x-4)]
  3. Integrate the first term: ∫6/√(x-4)dx = 3√(x-4) + C
  4. Integrate the second term: ∫7(√x-4)/(x-5)dx = 7ln|x-5| + 7√x-4 + C
  5. Combine the two results: 3√(x-4) + 7ln|x-5| + 7√x-4 + C

Question:

Integrate the rational function 1−x^2/x(1−2x)

Answer:

Answer:

  1. Rewrite the rational function as: (1 - x^2)/x - (2x - x^2)/x

  2. Simplify: 1/x - 2 + x

  3. Integrate: ln|x| - 2x + (1/2)x^2 + C

Question:

Integrate the rational function 2/(1−x)(1+x^2)

Answer:

Step 1: Rewrite the rational function as the sum of two fractions: 2/(1-x) + 2/(1+x^2)

Step 2: Integrate each fraction separately: ∫2/(1-x)dx = 2 ln|1-x| + C

Step 3: Integrate the second fraction: ∫2/(1+x^2)dx = 2 tan^-1(x) + C

Step 4: Combine the two integrals: 2 ln|1-x| + 2 tan^-1(x) + C

Question:

Integrate the rational function (x^2+1)(x^2+2)/(x^2+3)(x^2+4)

Answer:

Answer: Step 1: Rewrite the function in partial fraction form: (x^2+1)(x^2+2) / (x^2+3)(x^2+4) = A/(x^2+3) + B/(x^2+4) + C/(x^2+1) + D/(x^2+2)

Step 2: Solve for the constants A, B, C, and D: A(x^2+4) + B(x^2+3) + C(x^2+2) + D(x^2+1) = (x^2+1)(x^2+2)

A = 1, B = -1, C = 1, D = -1

Step 3: Substitute the constants back into the partial fraction form: 1/(x^2+3) - 1/(x^2+4) + 1/(x^2+1) - 1/(x^2+2)

Step 4: Integrate: ln|x^2+3| - ln|x^2+4| + ln|x^2+1| - ln|x^2+2| + C

Question:

Integrate the function : x√x+2

Answer:

  1. Rewrite the function as x^(3/2) + 2

  2. Integrate x^(3/2) using the power rule: (2/5)x^(5/2)

  3. Add the constant of integration: (2/5)x^(5/2) + C

Question:

Integrate the rational function 3x−1/(x+2)^2

Answer:

Answer: Step 1: Use the formula for integration of rational functions: ∫(P(x)/Q(x))dx = (P(x)∫(1/Q(x))dx) + C

Step 2: Integrate the denominator: ∫(1/(x+2)^2)dx = -(1/(x+2)) + C

Step 3: Substitute the denominator into the original equation: ∫(3x−1/(x+2)^2)dx = (3x−1)(-(1/(x+2))) + C

Step 4: Simplify the equation: ∫(3x−1/(x+2)^2)dx = -(3x−1)/(x+2) + C

Question:

Integrate the rational function 1/x(x^4−1)

Answer:

  1. ∫1/x(x^4−1)dx

  2. ∫1/x dx + ∫x^4−1 dx

  3. ln|x| + (1/5)x^5 - x

  4. ln|x| + (1/5)(x^5 - x)

Question:

Integrate the function (logx)^2/x

Answer:

Step 1: Use the formula ∫ (logx)^2/x dx = ∫ (logx)^2 * d(1/x)

Step 2: Rewrite the equation as ∫ (logx)^2 * (-1/x^2) dx

Step 3: Use the substitution u = logx, du = 1/x dx

Step 4: Rewrite the equation as ∫ (-u^2) * (-1/x^2) du

Step 5: Integrate using the power rule ∫ (-u^2) * (-1/x^2) du = (-1/x^2) * (-1/3)u^3 + C

Step 6: Substitute back for u and x to get the final answer: (-1/3)(logx)^3 + C

Question:

Integrate the function xsin^−1x

Answer:

  1. Rewrite the function as sin^-1(x) / x

  2. Use the integration formula for inverse trigonometric functions: ∫sin^-1(x) / x dx = xsin^-1x - ∫dx/cos(sin^-1(x))

  3. Use the integration formula for 1/cos(u): ∫dx/cos(sin^-1(x)) = ln|cos(sin^-1(x))| + C

  4. Substitute the result from step 3 into step 2: xsin^-1x - ln|cos(sin^-1(x))| - C

  5. The final result is: ∫xsin^−1x dx = xsin^-1x - ln|cos(sin^-1(x))| + C

Question:

Integrate the function (x−3)e^x/(x−1)^3

Answer:

  1. Rewrite the function using partial fractions:

(x−3)e^x/(x−1)^3 = [A/(x-1)] + [B/(x-1)^2] + [C/(x-1)^3] + (x-3)e^x

  1. Solve for A, B and C using the following equations:

A + B + C = 0 B + 2C = 3 C = -3

  1. Substitute A, B and C into the equation and simplify:

(x−3)e^x/(x−1)^3 = [-1/(x-1)] + [3/(x-1)^2] + [-3/(x-1)^3] + (x-3)e^x

  1. Integrate both sides of the equation:

∫ (x−3)e^x/(x−1)^3 dx = ∫ [-1/(x-1)] + [3/(x-1)^2] + [-3/(x-1)^3] + (x-3)e^x dx

  1. Solve the integrals on the right side:

∫ (x−3)e^x/(x−1)^3 dx = ln|x-1| - (x-1) - (3/2)(x-1)^2 - (1/4)(x-1)^3 + (1/2)(x-3)e^x + C

  1. Simplify the result:

∫ (x−3)e^x/(x−1)^3 dx = ln|x-1| - (3/2)(x-1)^2 - (1/4)(x-1)^3 + (1/2)(x-3)e^x + C

Question:

Integrate the function e^x(sinx+cosx)

Answer:

  1. Integrate e^x = e^x + C

  2. Integrate sinx + cosx = sin2x/2 + C

Question:

Integrate the function x^2/√x^6+a^6

Answer:

Answer:

  1. Rewrite the function as x^2/(x^3√(x^3+a^6))
  2. Take the integral of both sides: ∫x^2/(x^3√(x^3+a^6))dx
  3. Use the substitution u = x^3 + a^6 ∫x^2/√u du
  4. Integrate both sides: (1/3)x^3√u - (1/3)a^6√u + C
  5. Substitute back in u = x^3 + a^6 (1/3)x^3√(x^3+a^6) - (1/3)a^6√(x^3+a^6) + C

Question:

Find the integrals of the functions tan^4x

Answer:

  1. Integrate tan^4x using the power rule: ∫tan^4x dx = ∫x^4tan dx

  2. Use the chain rule to rewrite the integral: ∫x^4tan dx = x^4 ∫tan dx

  3. Integrate tan using the substitution u = tanx: ∫x^4tan dx = x^4 ∫u du

  4. Integrate u using the power rule: ∫x^4tan dx = x^4 ∫u du = x^4(u^2/2 + C)

  5. Substitute u = tanx back into the equation: ∫x^4tan dx = x^4(tan^2x/2 + C)

  6. Simplify the equation: ∫tan^4x dx = (tan^6x/6) + C

Question:

Integrate the function √tanx/sinxcosx

Answer:

  1. Integrate 1/cosx by using the substitution u = cosx: ∫1/cosx dx = ∫du/u = ln|u| + C = ln|cosx| + C

  2. Integrate √tanx by using the substitution u = tanx: ∫√tanx dx = ∫√u du = (2/3)u^(3/2) + C = (2/3)tanx^(3/2) + C

  3. Multiply the two integrals together: ∫√tanx/cosx dx = (2/3)tanx^(3/2)/cosx + C

Question:

Integrate the function sinx/1+cosx

Answer:

  1. Rewrite the function as sinx/(1+cosx) = (sinx*(1-cosx))/(1+cosx)

  2. Use the formula (u*v’)/(v) = u - (u/v)*v'

  3. Substitute u = sinx and v = 1+cosx, then v’ = -sinx

  4. Therefore, (sinx*(1-cosx))/(1+cosx) = sinx - (sinx/(1+cosx))(-sinx)

  5. Integrate both sides with respect to x:

∫(sinx*(1-cosx))/(1+cosx)dx = ∫sinxdx - ∫(sinx/(1+cosx))(-sinx)dx

  1. On the left side, use the formula ∫(u/v)dv = u*ln|v| + c

  2. Therefore, sinx*ln|1+cosx| + c = ∫sinxdx - ∫(sinx/(1+cosx))(-sinx)dx

  3. On the right side, use the formula ∫udv = uv + c

  4. Therefore, sinxln|1+cosx| + c = xsinx + c - (sinxln|1+cosx| + c)

  5. Simplify to get the answer: xsinx + c - sinxln|1+cosx| + c = xsinx - sinxln|1+cosx| + c

Question:

Find the integrals of the function tan^32xsec2x

Answer:

Answer: Step 1: Rewrite the function as (sec x tan^3 x)^2. Step 2: Use the chain rule to differentiate the function. Step 3: Integrate the function using the power rule. Step 4: The integral of (sec x tan^3 x)^2 is (1/4) sec x tan^4 x + C.

Question:

∫dx​/x(x^2+1) equals
A log∣x∣−1​/2log(x^2+1)+C B log∣x∣+1​/2log(x^2+1)+C C −log∣x∣+1​/2log(x^2+1)+C D 1​/2log∣x∣+log(x^2+1)+C

Answer:

Answer: D 1/2log∣x∣+log(x^2+1)+C

Question:

Integrate the function sin^−1(2x​/1+x^2)

Answer:

  1. Let u = sin^−1(2x​/1+x^2)

  2. du = (2/1+x^2)dx

  3. ∫du = ∫(2/1+x^2)dx

  4. ∫du = 2∫1/(1+x^2)dx

  5. ∫du = 2∫(1/x^2+1)dx

  6. ∫du = 2∫1/x^2dx + 2∫1dx

  7. ∫du = 2∫1/x^2dx + 2x + C

  8. ∫du = 2ln|x| + 2x + C

Question:

Integrate the function √x^2+4x−5

Answer:

  1. First, rewrite the function in the form of a polynomial: x^2 + 4x - 5 = (x + 5)(x - 1).

  2. Now, use the power rule for integration to calculate the integral: ∫(x + 5)(x - 1)dx = ∫x^2 - 1dx.

  3. Use the power rule again to calculate the integral: ∫x^2 - 1dx = 1/3x^3 - x + C.

  4. Finally, substitute the original function back in: ∫√x^2 + 4x - 5dx = 1/3x^3 - x + C.

Question:

∫ √x^2−8x+7 dx is equal to A 1​/2(x−4)√x^2−8x+7+9log∣x−4+√x^2−8x+7∣+C B 1​/2(x+4)√x^2−8x+7+9log∣x+4+√x^2−8x+7∣+C C 1​/2(x−4)√x^2−8x+7−32​log∣x−4+√x^2−8x+7∣+C D 1​/2(x−4)√x^2−8x+7−29​log∣x−4+√x^2−8x+7​∣+C

Answer:

Answer: A 1/2(x−4)√x^2−8x+7+9log∣x−4+√x^2−8x+7∣+C

Question:

Find the integrals of the functions sin^2(2x+5)

Answer:

Answer:

  1. Integrate both sides with respect to x: ∫sin2(2x + 5)dx

  2. Use the double angle formula to rewrite the integrand: ∫(1 - cos(4x + 10))/2 dx

  3. Split the integrand into two integrals: ∫1/2 dx + ∫(cos(4x + 10))/2 dx

  4. Integrate the first integral: 1/2x + C

  5. Integrate the second integral using the trigonometric substitution u = 4x + 10: 1/2 ∫cosudu

  6. Integrate the second integral using the trigonometric substitution u = 4x + 10: 1/2 sin(4x + 10) + C

Question:

Find the integral of ∫x^3+5x^2−4​/x^2dx

Answer:

Answer: Step 1: Use the method of partial fractions to rewrite the integrand as

∫(x^3+5x^2−4)/x^2dx = ∫x + 5 − 4/x dx

Step 2: Integrate both sides of the equation

∫x + 5 − 4/x dx = ∫x dx + ∫5 dx − ∫4/x dx

Step 3: Evaluate the integrals on the right side

∫x + 5 − 4/x dx = (1/2)x^2 + 5x − 4ln(x) + C

Question:

Find the integral of ∫2−3sinx​/cos^2xdx

Answer:

Answer: Step 1: Rewrite the integral as ∫2−3sinxdcosxdx.

Step 2: Use integration by parts, with u = sinx and dv = cosx dx.

Step 3: du = cosx dx and v = -sinx.

Step 4: Integrate u and v to get ∫2−3sinxdcosxdx = -sinxcosx|2−3 + ∫2−3cos^2xdx.

Step 5: Use the identity cos^2x = 1 - sin^2x to rewrite the integral.

Step 6: ∫2−3cos^2xdx = ∫2−3(1-sin^2x)dx.

Step 7: Use integration by parts again, with u = 1 and dv = -sin^2x dx.

Step 8: du = 0 dx and v = -1/2cos2x.

Step 9: Integrate u and v to get ∫2−3cos^2xdx = -1/2cos2x|2−3 + ∫2−3sin^2xdx.

Step 10: Use the identity sin^2x = 1 - cos^2x to rewrite the integral.

Step 11: ∫2−3sin^2xdx = ∫2−3(1-cos^2x)dx.

Step 12: Use integration by parts one last time, with u = 1 and dv = -cos^2x dx.

Step 13: du = 0 dx and v = 1/2sin2x.

Step 14: Integrate u and v to get ∫2−3sin^2xdx = 1/2sin2x|2−3 + ∫2−3cos^2xdx.

Step 15: Substitute the result from Step 14 into Step 9 to get ∫2−3cos^2xdx = -1/2cos2x|2−3 + 1/2sin2x|2−3 + ∫2−3cos^2xdx.

Step 16: Solve for ∫2−3cos^2xdx to get ∫2−3cos^2xdx = (1/2sin2x - 1/2cos2x)|2−3.

Step 17: Substitute the result from Step 16 into Step 4 to get ∫2−3sinxdcosxdx = -sinxcosx|2−3 + (1/2sin2x - 1/2cos2x)|2−3.

Step 18: Simplify the result to get the final answer: ∫2−3sinx​/cos^2xdx = -sinxcosx + 1/2sin2x - 1/2cos2x|2−3.

Question:

Integrate the function : √ax+b

Answer:

  1. First, use the substitution rule to rewrite the equation as u = √ax + b.

  2. Next, take the derivative of both sides of the equation to obtain du/dx = (1/2)a^(1/2)x^(-1/2).

  3. Then, use the substitution rule again to rewrite the equation as du = (1/2)a^(1/2)x^(-1/2)dx.

  4. Finally, integrate both sides of the equation to obtain ∫du = (1/2)a^(1/2)∫x^(-1/2)dx.

  5. Solving the integral on the right side yields 2a^(1/2)x^(1/2) + c, where c is an arbitrary constant.

  6. Substituting u back in yields 2a^(1/2)(√ax + b) + c.

Question:

The anti derivative of (√x+1​/√x) equals A 1​/3x^1/3​+2x^1​/2+C B 2​/3x^2/3​+1/2​x^2+C C 2​/3x^3/2​+2x^1​/2+C D 3​/2x^3/2​+1/2​x^1​/v+C

Answer:

Answer: C

Question:

Integrate the function 4x+1/√2x^2+x−3

Answer:

  1. Rewrite the function as: 4x + (1/√2x^2) + x - 3

  2. Add and subtract the terms: 4x + (1/√2x^2) + x - 3 = 4x + (1/√2x^2) + x + 3 - 3

  3. Use the power rule to integrate: ∫4x + (1/√2x^2) + x + 3 - 3 dx

  4. Apply the power rule: 2x^2 + x^2 + x^2 + 3x - 3x

  5. Simplify: 4x^2 + 4x - 3x

  6. Rewrite the function: ∫4x^2 + 4x - 3x dx

  7. Apply the power rule: (2/3)x^3 + (2/2)x^2 - (3/2)x + C

Question:

Integrate the function x/9−4x^2

Answer:

  1. ∫ x/9 − 4x² dx

  2. ∫ x/9 dx − ∫ 4x² dx

  3. (1/9)x²/2 − (2/3)x³

  4. (1/18)x² − (2/9)x³ + C

Question:

Find the integral of ∫(2x^2+e^x)dx

Answer:

Step 1: Rewrite the integral in standard form by moving the constant term to the right side of the equation:

∫2x^2dx + ∫e^xdx

Step 2: Use the power rule to integrate the first term:

2/3x^3 + ∫e^xdx

Step 3: Use the integration rule for exponential functions to integrate the second term:

2/3x^3 + e^x

Step 4: Combine the two terms to get the final answer:

2/3x^3 + e^x

Question:

Integrate the function (4x+2)√x^2+x+1

Answer:

  1. Rewrite the integrand as a perfect square: (4x+2)√(x+1)^2

  2. Rewrite the integrand as a single term: (4x+2)(x+1)

  3. Use the power rule to integrate: 1/2(4x+2)(x+1)^2 + C

Question:

Find the integral of ∫x^3−x^2+x−1​/x−1dx

Answer:

  1. Rewrite the integral as ∫(x^3−x^2+x−1)dx/ (x−1)

  2. Add 1 to both sides of the equation to get ∫(x^3−x^2+x)dx/ (x−1) + ∫1dx/(x−1)

  3. Integrate the first term on the left-hand side to get (1/4)x^4 − (1/3)x^3 + (1/2)x^2 + x + C

  4. Integrate the second term on the left-hand side to get ln|x−1| + C

  5. Combine the two constants of integration to get (1/4)x^4 − (1/3)x^3 + (1/2)x^2 + x + ln|x−1| + C

Question:

∫ cos2xcos4xcos6xdx

Answer:

  1. Use the formula ∫Acosmxcosnxdx = (A/2)(sinmxsinⁿ⁺¹x)/(mⁿ⁺¹ - nⁿ⁺¹)

  2. ∫ cos2xcos4xcos6xdx = (1/2)(sin2xsin5x - sin4xsin7x)/(3 - 5)

  3. (1/2)(sin2xsin5x - sin4xsin7x)/(3 - 5) = (1/2)(2sinxcos^4x - 4cos^2xsinxcos^3x)/(-2)

  4. (1/2)(2sinxcos^4x - 4cos^2xsinxcos^3x)/(-2) = -(sinxcos^4x - 2cos^2xsinxcos^3x)

Question:

Find the integrals of the functions 1−cosx/1+cosx

Answer:

Answer: Step 1: Rewrite the function as (1-cosx)/(1+cosx)

Step 2: Multiply the numerator and denominator by the conjugate of the denominator, which is (1-cosx)

Step 3: Simplify the function to (1-cosx)^2/(1+cosx)^2

Step 4: Use the substitution u = 1+cosx

Step 5: Rewrite the function as (1-cosx)^2/u^2

Step 6: Integrate the function with respect to x

Step 7: The integral of (1-cosx)^2/u^2 with respect to x is (1-cosx)^2*ln(u)+C

Step 8: Substitute u back with 1+cosx

Step 9: The integral of (1-cosx)/(1+cosx) with respect to x is (1-cosx)^2*ln(1+cosx)+C

Question:

Integrate the rational function 3x+5/x^3−x^2−x+1

Answer:

  1. Rewrite the rational function as: 3x + 5/(x - 1)(x^2 + x + 1)

  2. Use the formula for integration of a rational function by partial fractions: ∫(3x + 5/(x - 1)(x^2 + x + 1))dx

  3. Separate the rational function into partial fractions: ∫(A/(x - 1) + Bx + C/(x^2 + x + 1))dx

  4. Solve for A, B, and C: A = 3, B = 5, C = -3

  5. Substitute the values for A, B, and C into the equation: ∫(3/(x - 1) + 5x - 3/(x^2 + x + 1))dx

  6. Integrate the partial fractions: 3ln|x - 1| + 5x - 3/2(2x + 1)ln|x^2 + x + 1| + C

Question:

Integrate the function x(logx)^2

Answer:

Step 1: Use the substitution rule to rewrite x(logx)^2 as u^2, where u = logx.

Step 2: Integrate u^2 with respect to x.

Step 3: ∫u^2dx = (1/3)u^3 + c

Step 4: Substitute u = logx back into the equation.

Step 5: (1/3)logx^3 + c

Question:

Integrate the function e^2x−e^−2x/e^2x+e^−2x

Answer:

  1. Rewrite the function as: (e^2x - e^-2x) / (e^2x + e^-2x)

  2. Multiply both numerator and denominator by e^2x: (e^4x - 1) / (e^4x + 1)

  3. Rewrite the numerator as: (e^4x - 1) = (e^2x + 1)(e^2x - 1)

  4. Rewrite the denominator as: (e^4x + 1) = (e^2x + 1)(e^2x + 1)

  5. Rewrite the function as: (e^2x + 1)(e^2x - 1) / (e^2x + 1)(e^2x + 1)

  6. Factor out the common term in the numerator and denominator: (e^2x + 1)(e^2x - 1) / (e^2x + 1)^2

  7. Rewrite the function as: (e^2x + 1)(e^2x - 1) / (e^2x + 1)^2

  8. Integrate: ∫ (e^2x + 1)(e^2x - 1) / (e^2x + 1)^2 dx

  9. Use the formula ∫ udv = uv - ∫ vdu:

∫ (e^2x + 1)(e^2x - 1) / (e^2x + 1)^2 dx = (1/2)(e^2x - 1/e^2x) - (1/2)(∫ (2e^2x + 2) / (e^2x + 1)^2 dx)

  1. Use the formula ∫ u/v dx = ∫ udx / v:

∫ (2e^2x + 2) / (e^2x + 1)^2 dx = (2/e^2x + 2) ∫ (1 / (e^2x + 1) dx)

  1. Use the formula ∫ 1/u du = ln|u|:

∫ (1 / (e^2x + 1) dx) = ln|e^2x + 1| + C

  1. Substitute back into the original equation:

∫ (e^2x + 1)(e^2x - 1) / (e^2x + 1)^2 dx = (1/2)(e^2x - 1/e^2x) - (1/2)(2/e^2x + 2) ln|e^2x + 1| + C

Question:

Find the integral of the function 1/sinxcos^3x

Answer:

Answer:

Step 1: Rewrite the function in terms of sin x and cos x:

1/sinxcos^3x = (cosx/sinx) * (1/cos^2x)

Step 2: Use the following integration formulas:

∫ (cosx/sinx) dx = ln|sinx| + c

∫ (1/cos^2x) dx = tanx + c

Step 3: Integrate the function:

∫ (cosx/sinx) * (1/cos^2x) dx = (ln|sinx| + c)*(tanx + c)

Step 4: Simplify the integrand:

∫ (cosx/sinx) * (1/cos^2x) dx = ln|sinx|*tanx + c^2

Question:

Integrate the function x^2/(2+3x^3)^3

Answer:

  1. Let u = 2 + 3x^3
  2. du = 9x^2dx
  3. ∫x^2/(2+3x^3)^3dx = ∫x^2/u^3du
  4. ∫x^2/u^3du = 1/2u^(-2) + C
  5. ∫x^2/(2+3x^3)^3dx = 1/2(2+3x^3)^(-2) + C

Question:

Integrate the function 1/x+xlogx

Answer:

Answer:

  1. Rewrite the function as: (1/x) + (xlnx)
  2. Integrate both terms separately: ∫(1/x)dx = ln|x| + C ∫(xlnx)dx = (xlnx) - (x) + C
  3. Add the two terms together: ln|x| + (xlnx) - (x) + C

Question:

Integrate the rational function 1/x^4−1

Answer:

Answer: Step 1: Rewrite the rational function as the sum of two fractions: 1/x^4 - 1 = (1/x^4) + (-1)

Step 2: Use the power rule to integrate each fraction: Integral (1/x^4) dx = -1/x^3 + C Integral (-1) dx = -x + C

Step 3: Add the two integrals together: -1/x^3 - x + C = -1/x^3 - x + C

Question:

Integrate the function e^2x+3

Answer:

Answer: Step 1: Rewrite the function as u = e2x + 3

Step 2: Take the antiderivative of u, which is ∫u du = ∫(e2x + 3) du

Step 3: Apply the power rule and simplify, which is 1/2*e2x + 3x + C, where C is the constant of integration.

Question:

Integrate the function: x^2/1−x^6

Answer:

  1. Start by rewriting the function in terms of fractions: (x^2)/(1 - x^6)

  2. Use the power rule to rewrite the denominator: (x^2)/(1 - 6x^5 + 15x^4 - 20x^3 + 15x^2 - 6x + 1)

  3. Use the power rule to rewrite the numerator: (2x - 6x^3 + 10x^4 - 10x^5 + 4x^6)/(1 - 6x^5 + 15x^4 - 20x^3 + 15x^2 - 6x + 1)

  4. Use the long division method to divide the numerator by the denominator: x - 3x^2 + 5x^3 - 5x^4 + 2x^5 + C

  5. Add the constant of integration: x - 3x^2 + 5x^3 - 5x^4 + 2x^5 + C

Question:

Integrate the function √4−x^2

Answer:

  1. ∫√4−x^2 dx

  2. Let u = 4−x^2

  3. du = -2x dx

  4. ∫du = -1/2 ∫2x dx

  5. ∫du = -1/2 x^2 + C

  6. ∫√4−x^2 dx = -1/2 (4−x^2)^2 + C

Question:

Integrate the following function.sinxsin(cosx)

Answer:

Answer: Step 1: Use the formula ∫sinxsin(cosx)dx = -1/2cos(2x) + C

Step 2: Integrate -1/2cos(2x)

Step 3: -1/4sin(2x) + C

Question:

Integrate the function e2^x−1/e^2x+1

Answer:

  1. Take the natural log of both sides: ln(e2^x−1/e^2x+1)

  2. Use the power rule to expand the left-hand side: x ln(e2) - ln(e^2x+1)

  3. Use the natural log rule to expand the right-hand side: x ln(e2) - ln(e^2x+1)

  4. Simplify the equation: ln(e2^x−1/e^2x+1) = 0

  5. Take the exponential of both sides: e2^x−1/e^2x+1 = e^0

  6. Simplify the equation: e2^x−1/e^2x+1 = 1

  7. Solve for x: e2^x−1/e^2x+1 = 1 e2^x−e^2x = 0 2^x(e−1) = 0 2^x = 0 x = 0

Question:

Integrate the function cosx/√1+sinx

Answer:

  1. Rewrite the function as cosx/(1+sinx)^1/2

  2. Use the substitution u = sinx

  3. du = cosx dx

  4. ∫ cosx/(1+sinx)^1/2 du = ∫ (1/2)u^-1/2 du

  5. Integrate the right side of the equation using the power rule:

  6. (1/2)u^1/2 + C = (1/2)sinx^1/2 + C

Question:

Find the integrals of the function cosx−sinx/1+sin2x

Answer:

Answer:

  1. Rewrite the function in terms of sine and cosine: cosx−sinx/1+sin2x = (cosx - sinx)/(1 + sin^2x)

  2. Use the trigonometric identity sin^2x + cos^2x = 1 to simplify the denominator: (cosx - sinx)/(1 + sin^2x) = (cosx - sinx)/(1 + (1 - cos^2x))

  3. Use the trigonometric identity sin2x = 2sinxcosx to simplify the denominator: (cosx - sinx)/(1 + (1 - cos^2x)) = (cosx - sinx)/(1 + 2sinxcosx)

  4. Use the trigonometric identity sin(A + B) = sinAcosB + cosAsinB to simplify the numerator: (cosx - sinx)/(1 + 2sinxcosx) = (cosxcosx + sinxsinx)/(1 + 2sinxcosx)

  5. Use the trigonometric identity cos2x = cos^2x - sin^2x to simplify the numerator: (cosxcosx + sinxsinx)/(1 + 2sinxcosx) = (cos^2x - sin^2x)/(1 + 2sinxcosx)

  6. Use the substitution u = sinxcosx to simplify the denominator: (cos^2x - sin^2x)/(1 + 2sinxcosx) = (cos^2x - sin^2x)/(1 + 2u)

  7. Integrate both sides: ∫(cos^2x - sin^2x)/(1 + 2u)du = ∫1/(1 + 2u)du

  8. Solve the integral on the left side: ∫(cos^2x - sin^2x)/(1 + 2u)du = 1/2 ln|1 + 2u| + C

  9. Solve the integral on the right side: ∫1/(1 + 2u)du = 1/2 ln|1 + 2u| + C

  10. Therefore, the integral of the function cosx−sinx/1+sin2x is: ∫(cosx−sinx/1+sin2x)dx = 1/2 ln|1 + 2sinxcosx| + C

Question:

Find the integrals of the functions sin^3xcos^3x

Answer:

  1. Rewrite the function as (sinxcosx)^3.

  2. Use the formula ∫u^n du = (u^(n+1))/(n+1) to integrate.

  3. Integrate (sinxcosx)^3 to get (sinxcosx)^4/4.

Question:

Find the integral of the function sin^−1(cosx)

Answer:

Answer: Step 1: Rewrite the function as arcsin(cosx) Step 2: Use the integration formula ∫arcsin(x)dx = xarcsin(x) - √(1-x^2) + C Step 3: Substitute cosx for x Step 4: Integrate: ∫arcsin(cosx)dx = cosxarcsin(cosx) - √(1-cos^2x) + C

Question:

Find the integrals of the functions sin^3(2x+1)

Answer:

  1. Use the power rule to rewrite the function as sin^2(2x+1) * sin(2x+1)
  2. Integrate sin^2(2x+1) using the power rule: (1/3)sin^3(2x+1) + (1/2)sin^2(2x+1)cos(2x+1) + C
  3. Integrate sin(2x+1) using the power rule: -(1/2)cos^2(2x+1) + (1/2)sin(2x+1)cos(2x+1) + C
  4. Combine the two integrals: (1/3)sin^3(2x+1) + (1/2)sin^2(2x+1)cos(2x+1) - (1/2)cos^2(2x+1) + (1/2)sin(2x+1)cos(2x+1) + C

Question:

Integrate the function cotxlogsinx

Answer:

  1. Use the formula for integration by parts: ∫u dv = uv - ∫v du

  2. Let u = ln(sin x) and dv = cotx dx

  3. Then du = (cos x)/(sin x) dx and v = -ln|cotx|

  4. Substituting these values in the formula for integration by parts, ∫u dv = uv - ∫v du gives ∫ln(sin x) cotx dx = -ln|cotx| ln(sin x) - ∫-ln|cotx| (cos x)/(sin x) dx

  5. Simplifying, ∫ln(sin x) cotx dx = -ln|cotx| ln(sin x) + ∫ln|cotx| (sin x)/(cos x) dx

  6. Using the formula for integration by parts once again, ∫u dv = uv - ∫v du with u = ln|cotx| and dv = (sin x)/(cos x) dx, we get ∫ln|cotx| (sin x)/(cos x) dx = ln|cotx| (sin x) - ∫(sin x)/(cos x) ln|cotx| dx

  7. Simplifying, ∫ln(sin x) cotx dx = -ln|cotx| ln(sin x) + ln|cotx| (sin x) - ∫(sin x)/(cos x) ln|cotx| dx

  8. Finally, ∫ln(sin x) cotx dx = ln|cotx| (sin x) - ∫(sin x)/(cos x) ln|cotx| dx

Question:

Integrate the function sinx/(1+cosx)^2

Answer:

Answer: Step 1: Rewrite the function as sinx/(1-sinx^2)

Step 2: Use the substitution u = sinx

Step 3: Integrate 1/(1-u^2)

Step 4: Integral of 1/(1-u^2) = (1/2) * ln|1-u^2| + C

Step 5: Substitute u = sinx

Step 6: Integral of sinx/(1-sinx^2) = (1/2) * ln|1-sinx^2| + C

Question:

Integrate the function 1/√1+4x^2

Answer:

Answer: Step 1: Apply integration by parts.

Let u = 1/√1 + 4x^2 and dv = dx

du = -2x/√1 + 4x^2 dx

v = x

Step 2: Integrate both sides.

∫u dv = ∫v du

∫1/√1 + 4x^2 dx = x√1 + 4x^2 - ∫-2x/√1 + 4x^2 dx

Step 3: Solve the integral on the right side.

∫1/√1 + 4x^2 dx = x√1 + 4x^2 - (1/2)∫1/√1 + 4x^2 d(2x)

Step 4: Solve the integral on the right side.

∫1/√1 + 4x^2 dx = x√1 + 4x^2 - (1/2)(1/2)(2x)√1 + 4x^2 + C

Step 5: Simplify the expression.

∫1/√1 + 4x^2 dx = (1/2)x√1 + 4x^2 + C

Question:

Integrate the rational function 2x/(x^2+1)(x^2+3)

Answer:

Step 1: Start by breaking up the rational function into two separate fractions: 2x/(x^2+1) and (x^2+3).

Step 2: Integrate each fraction separately.

For 2x/(x^2+1): Integrate 2x/(x^2+1) = 2/2 * (x/x^2+1) = x/(x^2+1) + C

For (x^2+3): Integrate (x^2+3) = 1/3 * (x^3+3x) + C

Step 3: Add the two integrals together to get the final answer: Integrate 2x/(x^2+1)(x^2+3) = x/(x^2+1) + 1/3*(x^3+3x) + C

Question:

Integrate the function xsinx

Answer:

Answer:

  1. Rewrite the function as sin(x) * x
  2. Use the integration formula ∫sin(x)dx = -cos(x) + C
  3. Use the integration by parts formula ∫uvdx = u∫vdx - ∫v∫udx
  4. Let u = x and dv = sin(x)dx
  5. Therefore, du = dx and v = -cos(x)
  6. Plugging these values into the integration by parts formula: ∫xsin(x)dx = x(-cos(x)) - ∫-cos(x)dx
  7. Use the integration formula ∫-cos(x)dx = sin(x) + C
  8. Plugging this value back into the original equation: ∫xsin(x)dx = x(-cos(x)) - (sin(x) + C)
  9. Simplify: ∫xsin(x)dx = x(-cos(x)) - sin(x) - C

Question:

Integrate the function e^tan−1x/1+x^2

Answer:

Step 1: Use the substitution u = tan−1x

Step 2: du = 1/(1+x^2) dx

Step 3: ∫ e^tan−1x/(1+x^2) dx = ∫ e^u du

Step 4: Integrate both sides, ∫ e^u du = e^u + C

Step 5: Substitute u = tan−1x back in, ∫ e^tan−1x/(1+x^2) dx = e^tan−1x + C

Question:

Find the integral of ∫(√x−1​/√x)^2dx

Answer:

Step 1: Rewrite the integral using the power rule: ∫(x^(1/2) - 1)^2dx

Step 2: Rewrite the integrand using the product rule: 2x^(1/2) - 2x^(1/2) + 2

Step 3: Integrate the integrand using the power rule: x^(3/2) - 2x^(1/2) + 2x + C

Question:

Find the integral of ∫(1+x)√xdx

Answer:

  1. Use the substitution method: Let u = 1 + x, then du = dx

  2. Rewrite the integral: ∫u√(u-1)du

  3. Integrate: (2/3)u^(3/2) - (2/5)u^(5/2) + C

Question:

Find the integral of the function cos2x+2sin^2x/cos2x

Answer:

Answer: Step 1: Rewrite the function as 2sin^2x/cos2x + cos2x Step 2: Rewrite the function as sin2x + tan2x Step 3: Integrate both sides with respect to x Step 4: Integrate sin2x with respect to x: (1/2)cos2x Step 5: Integrate tan2x with respect to x: -(1/2)ln|cos2x| + C Step 6: Combine the two integrals: (1/2)cos2x - (1/2)ln|cos2x| + C

Question:

Integrate the function: x√1+2x^2

Answer:

  1. Rewrite the function as: (x^2 + 2x^2)^(1/2)

  2. Use the power rule to integrate: (2x^3/3)^(1/2)

  3. Simplify: (2/3)x^(3/2)

Question:

Integrate the function x+2/√x^2+2x+3

Answer:

Step 1: Rewrite the equation as ∫(x+2)/(x^2+2x+3)dx

Step 2: Rewrite the denominator as (x+3)(x+1)

Step 3: Use the substitution u=x+3

Step 4: Rewrite the equation as ∫(u-1)/u du

Step 5: Integrate both sides to get

Step 6: ∫(u-1)/u du = ln|u| + C

Question:

Find the integrals of the functions cos^42x

Answer:

  1. Rewrite the function as (cos^2x)^21: (cos^2x)^21

  2. Use the power rule of integration: (1/21) (cos^2x)^22 + C

  3. Simplify: (1/21) (cos^44x) + C

Question:

Find the integrals of the function sin3xcos4x

Answer:

Answer: Step 1: Rewrite the given function in terms of sine and cosine: sin3xcos4x = (1/2) [sin(7x) - sin(x)]

Step 2: Integrate both sides: (1/2) [sin(7x) - sin(x)] dx = (1/2) [-cos(7x) + cos(x)] + C

Step 3: Simplify the result: ∫sin3xcos4x dx = (1/2) [-cos(7x) + cos(x)] + C

Question:

Find the integral of ∫sec^2x​/cosec^2xdx

Answer:

Step 1: Use the substitution u = cosecx

Step 2: Differentiate u with respect to x to find du/dx: du/dx = -cosecxcotx

Step 3: Substitute u and du/dx into the original equation: ∫sec^2x(-cosecxcotx)dx

Step 4: Rewrite the equation as: -∫u^2du

Step 5: Integrate both sides of the equation: -1/3u^3 + C

Step 6: Substitute u back into the equation: -1/3(cosecx)^3 + C

Question:

If d​/dxf(x)=4x^3−3​/x^4 such that f(2)=0. Then f(x) is A x^4+1x^3​−129/8 ​B x^3+1x^4​+129/8 ​C x^4+1x^3​+129/8 ​D x^3+1x^4​−129/8

Answer:

Answer: C x^4+1x^3​+129/8

JEE స్టడీ మెటీరియల్ (గణితం)

01 సంబంధాలు మరియు విధులు

02 విలోమ త్రికోణమితి విధులు

03 మాత్రికలు

04 నిర్ణాయకాలు

05 కొనసాగింపు మరియు భిన్నత్వం

06 డెరివేటివ్‌ల అప్లికేషన్

07 సమగ్రతలు

08 ఇంటిగ్రల్స్ యొక్క అప్లికేషన్

09 వెక్టర్స్

10 త్రీ డైమెన్షనల్ జ్యామితి

11 లీనియర్ ప్రోగ్రామింగ్

12 సంభావ్యత