09 సీక్వెన్సులు మరియు సిరీస్
వ్యాయామం 1
Question:
an=n(n^2+5)/4
Answer:
Step 1: Expand the expression to get ‘an = n^3 + 5n/4.’
Step 2: Multiply both sides of the equation by 4 to get ‘4an = 4n^3 + 20n.’
Step 3: Subtract 4n^3 from both sides of the equation to get ‘4an - 4n^3 = 20n.’
Step 4: Divide both sides of the equation by 4 to get ‘an = n^2 + 5/4.’
Question:
an=n(n−2)/(n+3);a20
Answer:
Step 1: Substitute n = 20 in the given equation. an=20(20−2)/(20+3);a20
Step 2: Simplify the equation. an=380/(23);a20
Step 3: Calculate the value of an. an = 16.5217;a20
Question:
an =n/(n+1)
Answer:
Step 1: Multiply both sides of the equation by (n + 1): an(n + 1) = n
Step 2: Isolate the n on the left side of the equation: an(n + 1) - n = 0
Step 3: Factor the left side of the equation: n(an + 1) = 0
Step 4: Set each factor equal to zero: n = 0 an + 1 = 0
Step 5: Solve each equation: n = 0 a = -1
Question:
an=n^2/2^n;a7
Answer:
a7 = (7^2)/2^7
a7 = (49)/128
a7 = 0.3828125
Question:
a1=3,an=3a(n−1)+2 for all n>1
Answer:
Step 1: Calculate a2: a2 = 3a(2−1)+2 a2 = 3a(1)+2 a2 = 3(3)+2 a2 = 11
Step 2: Calculate a3: a3 = 3a(3−1)+2 a3 = 3a(2)+2 a3 = 3(11)+2 a3 = 35
Question:
a1=−1,an=(an−1)/n,n≥2
Answer:
Step 1: a1 = -1
Step 2: a2 = (a1)/2 = (-1)/2 = -1/2
Step 3: a3 = (a2)/3 = (-1/2)/3 = -1/6
Step 4: a4 = (a3)/4 = (-1/6)/4 = -1/24
Step 5: a5 = (a4)/5 = (-1/24)/5 = -1/120
Step 6: a6 = (a5)/6 = (-1/120)/6 = -1/720
Step 7: a7 = (a6)/7 = (-1/720)/7 = -1/5040
Step 8: a8 = (a7)/8 = (-1/5040)/8 = -1/40320
Step 9: a9 = (a8)/9 = (-1/40320)/9 = -1/362880
Step 10: a10 = (a9)/10 = (-1/362880)/10 = -1/3628800
Question:
an=(−1)^(n−1)5(n+1)
Answer:
Step 1: Simplify the exponent: an = (-1)^(n-1)5(n+1)
Step 2: Rewrite the expression using the power rule: an = (-1) * 5 * (n^2 + n)
Question:
an=(−1)^(n−1)n^3;a9
Answer:
-
Replace ’n’ with ‘9’ in the equation: an=(−1)^(9−1)9^3
-
Simplify the equation: an=(−1)^8*9^3
-
Calculate the power of 9: an=(−1)^8*729
-
Calculate the power of -1: an=-1*729
-
Multiply the two numbers: an=-729
Question:
If a1=a2=2,an=a(n−1)−1(n>2) then a5 is ? A : 1 B : −1 C : 0’ D : −2
Answer:
Answer: B (-1) Step 1: a1=a2=2 Step 2: an=a(n−1)−1, for n>2 Step 3: a5=a4−1 Step 4: a4=a3−1 Step 5: a3=a2−1 Step 6: a2=2 Step 7: a3=1 Step 8: a4=0 Step 9: a5=−1
Question:
an=2^n
Answer:
- a1=2^1
- a2=2^2
- a3=2^3
- a4=2^4
- a5=2^5
- a6=2^6
- a7=2^7
- a8=2^8
- a9=2^9
- a10=2^10
Question:
an=4n−3;a17,a24
Answer:
a17 = 4(17) - 3 = 67
a24 = 4(24) - 3 = 95
title: “Exercise 1” parent: “09 Sequences and Series” draft: false
Question:
The fibonacci sequence is defined by a1=1=a2 ;
an=a(n−1)+a(n−2) for n>2.
Find (an+1)/an, for n=1,2,3,4,5.
A : 1,2,3/2 ,5/3 and 8/5
B : 1,2,3/2,4 and 8
C : 3,4,9/2, 5 and 8
D : 1,2,3/2, 6 and 9
Answer:
Answer: A
Question:
an=(2n−3)/6
Answer:
Step 1: Multiply both sides of the equation by 6.
6an = 2n - 3
Step 2: Add 3 to both sides of the equation.
6an + 3 = 2n
Step 3: Divide both sides of the equation by 2.
(6an + 3)/2 = n
JEE స్టడీ మెటీరియల్ (గణితం)
01 సెట్లు
02 సంబంధాలు మరియు విధులు
03 త్రికోణమితి విధులు
04 గణిత ప్రేరణ సూత్రం
05 సంక్లిష్ట సంఖ్యలు మరియు చతుర్భుజ సమీకరణాలు
06 లీనియర్ అసమానతలు
07 ప్రస్తారణలు మరియు కలయికలు
08 ద్విపద సిద్ధాంతం
09 సీక్వెన్సులు మరియు సిరీస్
10 స్ట్రెయిట్ లైన్స్ వ్యాయామం
10 స్ట్రెయిట్ లైన్స్ ఇతరాలు
11 కోనిక్ విభాగాలు
12 త్రీ డైమెన్షనల్ జామెట్రీకి పరిచయం
13 పరిమితులు మరియు ఉత్పన్నాలు
14 గణిత రీజనింగ్
15 గణాంకాలు
16 సంభావ్యత