08 ద్విపద సిద్ధాంతం

వ్యాయామం 2

Question:

Find the 13th term in the expansion of (9x−1/3√x)18,x≠0

Answer:

Answer:

Step 1: Write the expansion of (9x−1/3√x)18,x≠0

(9x−1/3√x)18 = (9x)18 - (1/3√x)18

Step 2: Find the 13th term in the expansion

The 13th term in the expansion of (9x)18 is (9x)13.

The 13th term in the expansion of (1/3√x)18 is (1/3√x)13.

Step 3: Calculate the 13th term in the expansion of (9x−1/3√x)18,x≠0

The 13th term in the expansion of (9x−1/3√x)18,x≠0 is (9x)13 - (1/3√x)13.

Question:

Write the general term in the expansion of (x^2−y)^6

Answer:

(x^2)^6 - 6(x^2)(y)^5 + 15(x^2)(y)^4 - 20(x^2)(y)^3 + 15(y)^4 - 6(y)^5 + (y)^6

General Term: a6x2^6 - 6a5x2y5 + 15a4x2y4 - 20a3x2y3 + 15a2y4 - 6a1y5 + a0y6

Question:

Find the 4th term in the expansion of (x−2y)^12

Answer:

Answer:

Step 1: Rewrite (x−2y)^12 as (x^2 - 4xy + 4y^2)^6

Step 2: Use the binomial theorem to expand (x^2 - 4xy + 4y^2)^6

Step 3: The 4th term in the expansion is 6x^4y^2

Question:

Find the coefficient of a^5b^7 in (a−2b)^12 A : 12356 B : -101356 C : 101376 D : -101376

Answer:

Answer: C

Question:

The coefficients of the (r−1)th,rth and (r+1)th terms in the expansion of (x+1)^n are in the ratio 1 : 3 : 5. Find n and r.

Answer:

Step 1: The coefficient of the (r−1)th term is 1, the coefficient of the rth term is 3, and the coefficient of the (r+1)th term is 5.

Step 2: We can represent this as 1:3:5 = (x+1)^n-r : (x+1)^n : (x+1)^n+r.

Step 3: Dividing both sides by (x+1)^n, we get 1:(x+1) : (x+1)^2 = (x+1)^n-r : (x+1)^n : (x+1)^n+r.

Step 4: Comparing coefficients, we get n-r=0, n=r and n+r=2.

Step 5: Solving the equations, we get n=1 and r=1.

Question:

Find the middle terms in the expansion of (3−x^3/6)^7

Answer:

  1. Expand (3−x^3/6)^7 using the binomial theorem: (3−x^3/6)^7 = 3^7 - 73^6x^3/6 + 213^5x^6/36 - 353^4x^9/216 + 353^3x^12/1296 - 213^2x^15/7776 + 73x^18/46656 - x^21/279936

  2. Find the middle terms: The middle terms are 73^6x^3/6 and 353^3x^12/1296.

Question:

Write the general term in the expansion of (x^2−yx)^12,x≠0

Answer:

The general term in the expansion of (x^2−yx)^12 is a^12b^n, where a = x^2 and b = -yx.

Question:

Find the middle terms in the expansion of (x/3+9y)^10

Answer:

  1. (x/3+9y)^10
  2. (x^10/3^10 + 10x^9/3^10 * 9y + 45x^8/3^10 * 9^2y^2 + … + 9^10y^10)
  3. (10x^9/3^10 * 9y + 45x^8/3^10 * 9^2y^2 + … + 9^10y^10)
  4. (10x^9/3^10 * 9y + 180x^8/3^10 * 9^2y^2 + … + 9^10y^10)

Question:

In the expansion of (1+a)^(m+n) prove that coefficients of a^m and a^n are equal.

Answer:

  1. (1+a)^(m+n) = (1+a)^m * (1+a)^n

  2. Using the binomial theorem, (1+a)^m = Σ k=0 to m (mCk) (1)^(m-k) (a)^k

  3. Similarly, (1+a)^n = Σ k=0 to n (nCk) (1)^(n-k) (a)^k

  4. Multiplying (2) and (3), (1+a)^(m+n) = Σ k=0 to m (mCk) (1)^(m-k) (a)^k * Σ k=0 to n (nCk) (1)^(n-k) (a)^k

  5. Distributing, (1+a)^(m+n) = Σ k=0 to m Σ k=0 to n (mCk) (nCk) (1)^(m-k+n-k) (a)^(k+k)

  6. (1)^(m-k+n-k) = 1

  7. (a)^(k+k) = (a)^m if k = m and (a)^(k+k) = (a)^n if k = n

  8. Therefore, the coefficients of a^m and a^n are (mCm) (nCn) = (mCn).

Question:

Prove that the coefficient of x^n in the expression of (1+x)^2n is twice the coefficient of x^n in the expression of (1+x)^2n−1.

Answer:

  1. Expand (1+x)^2n and (1+x)^2n−1 using the binomial theorem.

(1+x)^2n = Σ(nCk)(1^(2n-k))(x^k)

(1+x)^2n−1 = Σ(nCk)(1^(2n-1-k))(x^k)

  1. Compare the coefficients of x^n in the two expressions.

Coefficient of x^n in (1+x)^2n = nCn = 1

Coefficient of x^n in (1+x)^2n−1 = nCn−1 = n/(n-1)

  1. Prove that the coefficient of x^n in (1+x)^2n is twice the coefficient of x^n in (1+x)^2n−1.

1 = 2(n/(n-1))

2n = n

n = n

Therefore, the coefficient of x^n in (1+x)^2n is twice the coefficient of x^n in (1+x)^2n−1.

Question:

Find a positive value of m for which the coefficient of x^2 in the expansion (1+x)^m is 6

Answer:

(1+x)^m = a_0 + a_1x + a_2x^2 + a_3x^3 + ….

a_2 = coefficient of x^2

a_2 = (m)(m-1)/2

6 = (m)(m-1)/2

6(2) = m(m-1)

12 = m^2 - m

m^2 - m - 12 = 0

(m-4)(m+3) = 0

m = 4 or m = -3

Since we are looking for a positive value of m,

m = 4

Question:

The coefficient of x5 in the expansion of (x+3)^8 is A : 1542 B : 1512 C : 2512 D : 12 E : 4

Answer:

Answer: B : 1512

JEE స్టడీ మెటీరియల్ (గణితం)

01 సెట్లు

02 సంబంధాలు మరియు విధులు

03 త్రికోణమితి విధులు

04 గణిత ప్రేరణ సూత్రం

05 సంక్లిష్ట సంఖ్యలు మరియు చతుర్భుజ సమీకరణాలు

06 లీనియర్ అసమానతలు

07 ప్రస్తారణలు మరియు కలయికలు

08 ద్విపద సిద్ధాంతం

09 సీక్వెన్సులు మరియు సిరీస్

10 స్ట్రెయిట్ లైన్స్ వ్యాయామం

10 స్ట్రెయిట్ లైన్స్ ఇతరాలు

11 కోనిక్ విభాగాలు

12 త్రీ డైమెన్షనల్ జామెట్రీకి పరిచయం

13 పరిమితులు మరియు ఉత్పన్నాలు

14 గణిత రీజనింగ్

15 గణాంకాలు

16 సంభావ్యత