08 ద్విపద సిద్ధాంతం

వ్యాయామం 1

Question:

Using Binomial Theorem, indicate which number is large (1.1)^10000 or 1000.

Answer:

Answer:

  1. Using Binomial Theorem, we can expand (1.1)^10000 into a sum of terms as follows: (1.1)^10000 = ∑ (nCk) (1.1)^k (0.1)^(10000-k)
  2. Since 1000 is a constant, it does not change.
  3. Therefore, (1.1)^10000 is larger than 1000.

Question:

Using Binomial Theorem, evaluate (102)^5

Answer:

Answer: Step 1: The binomial theorem states that for any two numbers a and b, (a + b)^n = Σ (nCk)a^(n-k)b^k, where nCk is the combination of n things taken k at a time.

Step 2: Substitute a = 102 and b = 0 in the binomial theorem.

Step 3: Plug n = 5 into the equation.

Step 4: Calculate the value of (nCk)a^(n-k)b^k for k = 0, 1, 2, 3, 4, and 5.

Step 5: Add all the values of (nCk)a^(n-k)b^k together to get the result.

Answer: 10205025

Question:

Find (x+1)^6+(x−1)^6. Hence or otherwise evaluate (√2+1)^6+(√2−1)^6

Answer:

(x+1)^6+(x−1)^6

= (x^6 + 6x^5 + 15x^4 + 20x^3 + 15x^2 + 6x + 1) + (x^6 - 6x^5 + 15x^4 - 20x^3 + 15x^2 - 6x + 1)

= 2x^6 + 30x^4 + 30x^2 + 2

Now, substituting x = √2,

(√2+1)^6+(√2−1)^6

= 2(2)^6 + 30(2)^4 + 30(2)^2 + 2

= 128 + 480 + 120 + 2

= 630

Question:

Evaluate (96)^3

Answer:

Step 1: Multiply 96 by itself twice:

(96)^3 = 96 x 96 x 96

Step 2: Calculate 96 x 96:

(96)^3 = 96 x 96 x 96 = 9216 x 96

Step 3: Calculate 9216 x 96:

(96)^3 = 9216 x 96 = 8840192

Question:

Using Binomial Theorem, evaluate (101)^4

Answer:

Answer: Step 1: Using the Binomial Theorem, (a+b)^n = Σ(nCk)akbn-k, where n is the exponent and k is the index of summation.

Step 2: Substitute a = 101, b = 0, and n = 4 into the Binomial Theorem.

Step 3: Calculate the summation.

Step 4: (101)^4 = Σ(4Ck)101k0-k = Σ(4Ck)101k = 1 + 404 + 30,301 + 1,210,404.

Step 5: Therefore, (101)^4 = 1 + 404 + 30,301 + 1,210,404.

Question:

Expand the expression (2x−3)^6

Answer:

(2x−3)^6 = (2x)^6 − 6(2x)^5(3) + 15(2x)^4(3)^2 − 20(2x)^3(3)^3 + 15(2x)^2(3)^4 − 6(2x)(3)^5 + (3)^6

= 64x^6 - 1152x^53 + 5460x^43^2 - 8640x^33^3 + 5460x^23^4 - 1152x*3^5 + 3^6

Question:

Find (a+b)^4−(a−b)^4. Hence find s if (√3+√2)^4−(√3−√2)^4=40√s

Answer:

(a+b)^4−(a−b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4 - (a^4 - 4a^3b + 6a^2b^2 - 4ab^3 + b^4)

= 8a^3b + 24a^2b^2 + 16ab^3

Substituting a = √3 and b = √2,

(√3+√2)^4−(√3−√2)^4 = 8(√3)^3(√2) + 24(√3)^2(√2)^2 + 16(√3)(√2)^3

= 40√6

Hence, s = 6

Question:

Expand (x/3+1/x)^5

Answer:

Answer: Step 1: (x/3 + 1/x)^5 = Step 2: (x/3)^5 + 5(x/3)^4(1/x) + 10(x/3)^3(1/x)^2 + 10(x/3)^2(1/x)^3 + 5(x/3)(1/x)^4 + (1/x)^5 Step 3: x^5/243 + 5x^4/27 + 10x^3/9 + 10x^2/3 + 5x/x + 1/x^5 Step 4: x^5/243 + 5x^4/27 + 10x^3/9 + 10x^2/3 + 5 + 1/x^5

Question:

Expand (1−2x)^5

Answer:

(1−2x)^5 =

1 - 10x + 40x^2 - 80x^3 + 80x^4 - 32x^5

Question:

Expand (x+1/x)^6

Answer:

(x+1/x)^6 = (x^2 + 1)/x^2)^6 = (x^12 + 6x^10 + 15x^8 + 20x^6 + 15x^4 + 6x^2 + 1)/x^12 = x^0 + 6x^-2 + 15x^-4 + 20x^-6 + 15x^-8 + 6x^-10 + x^-12

Question:

Using Binomial theorem, evaluate (99)^5

Answer:

Answer: Step 1: Using Binomial theorem, (a+b)^n = (a^n) + (nC1)(a^(n-1)b) + (nC2)(a^(n-2)b^2) + …. + (nCn-1)(ab^(n-1)) + (b^n)

Step 2: Substitute a = 99 and b = 0 in the above equation.

Step 3: (99 + 0)^5 = (99^5) + (5C1)(99^40) + (5C2)(99^30^2) + (5C3)(99^20^3) + (5C4)(990^4) + (0^5)

Step 4: (99 + 0)^5 = (99^5) + (0) + (0) + (0) + (0) + (0)

Step 5: (99 + 0)^5 = (99^5)

Hence, the answer is 99^5 = 9,841,051,625.

Question:

Using binomial theorem, indicate which is larger (1.1)^10000 or 1000.

Answer:

  1. Using the binomial theorem, we can expand (1.1)^10000 as:

(1.1)^10000 = (1 + 0.1)^10000 =

1 + 10000(0.1) + (10000)(10000-1)/2 (0.1)^2 + … + (10000)(0.1)^10000

  1. Since the powers of 0.1 become increasingly small, we can ignore the terms after the first two and say that (1.1)^10000 is approximately equal to:

1 + 10000(0.1) = 1100

  1. Since 1100 is greater than 1000, (1.1)^10000 is larger than 1000.

Question:

Find (a+b)^4−(a−b)^4. Hence, evaluate (√3+√2)^4−(√3−√2)^4.

Answer:

Step 1: (a+b)^4−(a−b)^4 = (a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4) − (a^4 − 4a^3b + 6a^2b^2 − 4ab^3 + b^4)

Step 2: (a+b)^4−(a−b)^4 = 8a^3b + 16a^2b^2 + 8ab^3

Step 3: Substituting a = √3 and b = √2, we get

(√3+√2)^4−(√3−√2)^4 = 8(√3)(√2)^3 + 16(√3)^2(√2)^2 + 8(√3)^3(√2)

Step 4: Simplifying further, we get

(√3+√2)^4−(√3−√2)^4 = 24√6 + 32√12 + 24√3

Step 5: Hence, the required answer is

(√3+√2)^4−(√3−√2)^4 = 80√3

Question:

Show that 9^(n+1)−8n−9 is divisible by 64, whenever n is a positive integer

Answer:

  1. 9^(n+1) – 8n – 9
  2. 9^(n+1) – 8n – 9 = 9(9^n) – 8n – 9
  3. 9(9^n) – 8n – 9 = 9(9^n) – 8n – 9 + 8n
  4. 9(9^n) – 8n – 9 + 8n = 9(9^n) – 9 + 8n
  5. 9(9^n) – 9 + 8n = 9(9^n) – 9 + 8(8)
  6. 9(9^n) – 9 + 8(8) = 9(9^n) – 9 + 64
  7. 9(9^n) – 9 + 64 = 64(9^n - 1/8)
  8. 64(9^n - 1/8) is divisible by 64

Therefore, 9^(n+1)−8n−9 is divisible by 64, whenever n is a positive integer.

JEE స్టడీ మెటీరియల్ (గణితం)

01 సెట్లు

02 సంబంధాలు మరియు విధులు

03 త్రికోణమితి విధులు

04 గణిత ప్రేరణ సూత్రం

05 సంక్లిష్ట సంఖ్యలు మరియు చతుర్భుజ సమీకరణాలు

06 లీనియర్ అసమానతలు

07 ప్రస్తారణలు మరియు కలయికలు

08 ద్విపద సిద్ధాంతం

09 సీక్వెన్సులు మరియు సిరీస్

10 స్ట్రెయిట్ లైన్స్ వ్యాయామం

10 స్ట్రెయిట్ లైన్స్ ఇతరాలు

11 కోనిక్ విభాగాలు

12 త్రీ డైమెన్షనల్ జామెట్రీకి పరిచయం

13 పరిమితులు మరియు ఉత్పన్నాలు

14 గణిత రీజనింగ్

15 గణాంకాలు

16 సంభావ్యత