03 త్రికోణమితి విధులు

వ్యాయామం 04

Question:

If sinx+sin3x+sin5x=0, then the solution is A x=2nπ​/3,nϵI B nπ​/3,nϵI C (3n±1)π​/3,nϵI D none of these

Answer:

Answer: C (3n±1)π​/3,nϵI

Question:

Solve: tanx=−√3

Answer:

Step 1: Solve for x in terms of the inverse tangent: x = tan-1(-√3).

Step 2: Use a calculator to calculate the value of x, which is approximately -54.735610317245 degrees.

Question:

Principle solution of equation cotx=−√3 is A π​/3 B 2π​/3 C π​/6 D 5π/6

Answer:

Step 1: Write the equation in terms of sine and cosine.

cotx = -√3

=> sinx/cosx = -√3

Step 2: Solve for sinx.

sinx = -√3cosx

Step 3: Use the fact that sin2x + cos2x = 1 to solve for cosx.

cos2x = 1 + (√3)2cos2x

=> cos2x = 1 - 3cos2x

=> 4cos2x = 1

=> cos2x = 1/4

Step 4: Solve for x.

cosx = ±1/2

=> x = ±π/3 or ±2π/3

Therefore, the principle solution of the equation cotx=-√3 is A π/3.

Question:

Solve the following equation: cosx+cos3x−cos2x=0

Answer:

  1. Cosx + Cos3x - Cos2x = 0

  2. Cosx + Cos(2x + x) - Cos2x = 0

  3. Cosx + Cos2x*Cosx - Cos2x = 0

  4. Cosx(1 + Cos2x) - Cos2x = 0

  5. Cos2x(Cosx - 1) = 0

  6. Cosx = 1 or Cos2x = 0

  7. x = 0 or x = ±π/2

Question:

Find the general solution: cos3x+cosx−cos2x=0

Answer:

Step 1: Use the identity cos(A + B) = cosAcosB - sinAsinB to rewrite the equation as cos3x + cosx - (2cos2x - 1) = 0

Step 2: Use the identity cos2A = 2cos2A-1 to rewrite the equation as cos3x + cosx - 2cos2x + 1 = 0

Step 3: Factor out the common factor of cosx to get cosx(cos2x + 1) = 0

Step 4: Set each factor equal to zero and solve for x: cosx = 0 ⇒ x = (2n + 1)π/2 cos2x + 1 = 0 ⇒ 2cos2x - 1 = 0 ⇒ cosx = ±1/√2 ⇒ x = (2n + 1)π/3, (2n + 1)5π/6

Question:

Find the general solution: cos4x=cos2x

Answer:

  1. Rewrite the equation as cos4x=1-2sin2x.

  2. Replace cos4x with (cos2x)2.

  3. Factor the equation to get (cos2x-1)(cos2x+1)=2sin2x.

  4. Solve for cos2x by dividing each side by (cos2x+1): cos2x=1-2sin2x/(cos2x+1).

  5. Solve for sin2x by using the Pythagorean identity: sin2x=sqrt(1-(1-2sin2x/(cos2x+1))2).

  6. The general solution is cos2x=1-2sin2x/(cos2x+1) and sin2x=sqrt(1-(1-2sin2x/(cos2x+1))2).

Question:

Find the general solution of the equation sin2x+cosx=0.

Answer:

  1. Start by expanding the left side of the equation: sin2x+cosx=2sinxcosx+cosx

  2. Set the left side of the equation equal to zero: 2sinxcosx+cosx=0

  3. Factor the left side of the equation: (2sinx+1)(cosx)=0

  4. Set each factor equal to zero: 2sinx+1=0 and cosx=0

  5. Solve for each factor: 2sinx=-1 and cosx=0

  6. Find the solution for each equation: x= -π/4 and x=π/2

  7. The general solution of the equation sin2x+cosx=0 is x=-π/4 and x=π/2.

Question:

Find the general solution of cosec x = -2.

Answer:

Step 1: cosec x = -2

Step 2: 1/sin x = -2

Step 3: sin x = -1/2

Step 4: x = arcsin(-1/2) + 2πn, where n is an integer.

Step 5: The general solution is x = arcsin(-1/2) + 2πn, where n is an integer.

Question:

Find the general solution of the equation sec22x=1−tan2x.

Answer:

  1. sec2 2x = 1 - tan2x
  2. sec2 2x = sec2x - tan2x
  3. sec2 2x - sec2x = -tan2x
  4. (sec2x)(sec2x - 1) = -tan2x
  5. sec2x = -tan2x/(sec2x - 1)
  6. 2x = arctan(-tan2x/(sec2x - 1)) + nπ for any integer n

JEE స్టడీ మెటీరియల్ (గణితం)

01 సెట్లు

02 సంబంధాలు మరియు విధులు

03 త్రికోణమితి విధులు

04 గణిత ప్రేరణ సూత్రం

05 సంక్లిష్ట సంఖ్యలు మరియు చతుర్భుజ సమీకరణాలు

06 లీనియర్ అసమానతలు

07 ప్రస్తారణలు మరియు కలయికలు

08 ద్విపద సిద్ధాంతం

09 సీక్వెన్సులు మరియు సిరీస్

10 స్ట్రెయిట్ లైన్స్ వ్యాయామం

10 స్ట్రెయిట్ లైన్స్ ఇతరాలు

11 కోనిక్ విభాగాలు

12 త్రీ డైమెన్షనల్ జామెట్రీకి పరిచయం

13 పరిమితులు మరియు ఉత్పన్నాలు

14 గణిత రీజనింగ్

15 గణాంకాలు

16 సంభావ్యత