02 సంబంధాలు మరియు విధులు

వ్యాయామం 1

Question:

State whether each of the following statements are true or false. If the statement is false rewrite the given statement correctly (i) If P={m,n} and Q={n,m} then P×Q={(m,n),(n,m)} (ii) If A and B are non-empty sets then A×B is a non-empty set of ordered pairs (x,y) such that x∈A and y∈B (iii) If A={1,2},B={3,4} then A×(B∩ϕ)=ϕ

Answer:

(i) True (ii) True (iii) False; A×(B∩ϕ)=ϕ is an empty set

Question:

If A×B={(a,x),(a,y),(b,x),(b,y)} Find A and B.

Answer:

A = {a,b} B = {x,y}

Question:

The cartesian product A×A has 9 elements among which are found (−1,0) and (0,1). Find the set A and the remaining elements of A×A.

Answer:

Set A = {-1, 0, 1}

The remaining elements of A×A are: (1, -1), (1, 0), (1, 1), (0, -1), (0, 0), (-1, 1), (-1, -1), (-1, 0)

Question:

If (3x​+1,y−32​)=(35​,31​) find the values of x and y

Answer:

  1. Rearrange the equation to isolate the variable: 3x + 1 = 35

  2. Subtract 1 from both sides: 3x = 34

  3. Divide both sides by 3: x = 11

  4. Substitute x = 11 into the original equation: 3(11) + 1 = 35

  5. Simplify: 32 = 35

  6. Subtract 32 from both sides: y = 31

Question:

Let A={1,2},B={1,2,3,4},C={5,6} and D={5,6,7,8} Verify that (i) A×(B∩C)=(A×B)∩(A×C) (ii) A×C is a subset of B×D

Answer:

(i) A×(B∩C) = { (1,1), (1,2), (2,1), (2,2) } (A×B)∩(A×C) = { (1,1), (1,2), (2,1), (2,2) }

A×(B∩C) = (A×B)∩(A×C)

(ii) A×C = { (1,5), (1,6), (2,5), (2,6) } B×D = { (1,5), (1,6), (1,7), (1,8), (2,5), (2,6), (2,7), (2,8), (3,5), (3,6), (3,7), (3,8), (4,5), (4,6), (4,7), (4,8) }

A×C is a subset of B×D

Question:

If the set A has 3 elements and the set B={3,4,5} then find the number of elements in (A×B)?

Answer:

Answer:

  1. The set A has 3 elements, so A = {a1, a2, a3}.

  2. The set B={3,4,5}, so B = {b1, b2, b3}.

  3. The number of elements in (A×B) = 3 × 3 = 9.

Question:

If A = {-1, 1}, find A × A × A.

Answer:

A × A × A = {(-1) × (-1) × (-1), (-1) × (-1) × 1, (-1) × 1 × (-1), (-1) × 1 × 1, 1 × (-1) × (-1), 1 × (-1) × 1, 1 × 1 × (-1), 1 × 1 × 1}

= {-1, -1, -1, 1, -1, 1, -1, 1}

Question:

If A = {-1, 1}, find A × A × A.

Answer:

A × A × A = {(-1) × (-1) × (-1), (-1) × (-1) × 1, (-1) × 1 × (-1), (-1) × 1 × 1, 1 × (-1) × (-1), 1 × (-1) × 1, 1 × 1 × (-1), 1 × 1 × 1}

= {-1, -1, -1, 1, -1, 1, -1, 1}

Question:

Let A={1,2} and B={3,4}. Write A×B. How many subsets will A×B have?

Answer:

A x B = {(1,3), (1,4), (2,3), (2,4)}

A x B will have 4 subsets.

Question:

If G={7,8} and H={5,4,2}, find G×H and H×G.

Answer:

G×H = {(7,5), (7,4), (7,2), (8,5), (8,4), (8,2)}

H×G = {(5,7), (5,8), (4,7), (4,8), (2,7), (2,8)}

Question:

Let A and B be two sets such that n(A)=3 and n(B)=2. If (x,1),(y,2),(z,1) are in A×B find A and B where x,y and z are distinct elements

Answer:

A = {x,y,z} B = {1,2}

JEE స్టడీ మెటీరియల్ (గణితం)

01 సెట్లు

02 సంబంధాలు మరియు విధులు

03 త్రికోణమితి విధులు

04 గణిత ప్రేరణ సూత్రం

05 సంక్లిష్ట సంఖ్యలు మరియు చతుర్భుజ సమీకరణాలు

06 లీనియర్ అసమానతలు

07 ప్రస్తారణలు మరియు కలయికలు

08 ద్విపద సిద్ధాంతం

09 సీక్వెన్సులు మరియు సిరీస్

10 స్ట్రెయిట్ లైన్స్ వ్యాయామం

10 స్ట్రెయిట్ లైన్స్ ఇతరాలు

11 కోనిక్ విభాగాలు

12 త్రీ డైమెన్షనల్ జామెట్రీకి పరిచయం

13 పరిమితులు మరియు ఉత్పన్నాలు

14 గణిత రీజనింగ్

15 గణాంకాలు

16 సంభావ్యత