05 ਨਿਰੰਤਰਤਾ ਅਤੇ ਵਿਭਿੰਨਤਾ
ਅਭਿਆਸ 05
Question:
Find the derivative of the function given by f(x)=(1+x)(1+x^2)(1+x^4)(1+x^8) and hence find f′(1).
Answer:
f(x)=(1+x)(1+x^2)(1+x^4)(1+x^8)
f’(x)= (1+x)(2x+2x^3+4x^5+8x^7) + (1+x^2)(1+x^4)(1+x^8) + (1+x)(1+x^2)(4x^3+8x^7) + (1+x)(1+x^2)(1+x^4)(8x^6)
f’(1)= (1+1)(2+2+4+8) + (1+1)(1+1)(1+1) + (1+1)(1+1)(4+8) + (1+1)(1+1)(1+1)(8)
f’(1)= 24 + 8 + 16 + 8
f’(1)= 56
Question:
Differentiate the function w.r.t. x. x^(xcosx)+x^2+1/x^2−1
Answer:
Step 1: Rewrite the function in terms of exponents: f(x) = x^(xcosx + 2) + 1/x^2 - 1
Step 2: Take the derivative of the function w.r.t. x: f’(x) = (xcosx + 2)x^(xcosx + 1) + (-2)/x^3
Question:
Differentiate the function w.r.t. x. (logx)^x+x^(logx)
Answer:
Step 1: Take the natural logarithm of both sides of the equation.
log((logx)^x + x^(logx))
Step 2: Use the logarithmic differentiation rule to differentiate the equation.
(1/x) (x^(logx) * log(logx) + (logx)^x * (1/logx))
Step 3: Simplify the equation.
(1/x) (x^(logx) * log(logx) + (logx)^x * (1/logx)) = (logx)^x * (log(logx) + 1/logx)
Question:
Differentiate (x^2−5x+8)(x^3+7x+9) in three ways mentioned below, (i) By using product rule (ii) By expanding the product to obtain a single polynomial (iii) By logarithmic differentiation Do they all give the same answer?
Answer:
(i) By using product rule:
d/dx[(x^2−5x+8)(x^3+7x+9)] = (x^2−5x+8) d/dx(x^3+7x+9) + (x^3+7x+9) d/dx(x^2−5x+8)
= (x^2−5x+8)(3x^2+7) + (x^3+7x+9)(2x−5)
= 3x^4+14x^3+53x^2−35x+72
(ii) By expanding the product to obtain a single polynomial:
(x^2−5x+8)(x^3+7x+9)
= x^5 +7x^4−35x^3+53x^2−35x+72
(iii) By logarithmic differentiation:
d/dx[(x^2−5x+8)(x^3+7x+9)]
= (x^2−5x+8)(x^3+7x+9) * (d/dx[ln(x^2−5x+8)] + d/dx[ln(x^3+7x+9)])
= (x^2−5x+8)(x^3+7x+9) * (2x−5 + 3x^2+7)
= 3x^4+14x^3+53x^2−35x+72
Yes, all three methods give the same answer.
Question:
Find dy/dx of the function x^y+y^x=1
Answer:
Step 1: Take the natural logarithm of both sides of the equation:
ln(x^y + y^x) = ln(1)
Step 2: Differentiate both sides of the equation with respect to x:
y(ln(x))(x^y)’ + x(ln(y))(y^x)’ = 0
Step 3: Simplify the equation:
y(ln(x))y’x^(y-1) + x(ln(y))x’y^(x-1) = 0
Step 4: Rearrange the equation to solve for dy/dx:
dy/dx = -(y(ln(x))x^(y-1)) / (x(ln(y))y^(x-1))
Question:
Find dy/dx of (cosx)^y=(cosy)^x
Answer:
- Take the natural logarithm of both sides:
ln (cosx)^y = ln (cosy)^x
- Differentiate both sides with respect to x:
y*(cosx)^y*(-sinx) = x*(cosy)^x*(-siny)
- Divide both sides by (cosx)^y:
y*(-sinx) / (cosx)^y = x*(-siny) / (cosy)^x
- Multiply both sides by (cosy)^x:
y*(-sinx) (cosy)^x / (cosx)^y = x*(-siny)
- Divide both sides by (cosy)^x:
y*(-sinx) / (cosx)^y = x*(-siny) / (cosy)^x
- Simplify both sides:
dy/dx = -sinyy / (cosx)^y + sinxx / (cosy)^x
Question:
Find dy/dx of xy=e^x−y
Answer:
Step 1: Rewrite the equation as y = e^x - xy
Step 2: Take the derivative of both sides with respect to x:
dy/dx = e^x - (x*dy/dx + y)
Step 3: Solve for dy/dx:
dy/dx = (e^x - y) / (x)
Question:
Differentiate the function w.r.t. x. (x+1/x)^x+x^(1+1/x)
Answer:
Step 1: Use the chain rule to write the function as a product of two functions: f(x) = (x+1/x)^x * x^(1+1/x)
Step 2: Differentiate the first function w.r.t. x: f’(x) = x^x * ln(x+1/x)
Step 3: Differentiate the second function w.r.t. x: f’(x) = x^(1+1/x) * (1+1/x) * ln(x)
Step 4: Multiply the two derivatives together: f’(x) = x^x * ln(x+1/x) * x^(1+1/x) * (1+1/x) * ln(x)
Step 5: Simplify the expression: f’(x) = x^(x+1+1/x) * ln(x+1/x) * (1+1/x) * ln(x)
Question:
Differentiate the function w.r.t. x. (sinx)^x+sin^−1√x
Answer:
Step 1: Take the natural logarithm of both sides of the equation to make it easier to differentiate: ln((sinx)^x + sin^−1√x)
Step 2: Differentiate both sides of the equation w.r.t. x: (d/dx) ln((sinx)^x + sin^−1√x)
Step 3: Use the chain rule to differentiate the left side of the equation: (d/dx) ln((sinx)^x + sin^−1√x) = (1/((sinx)^x + sin^−1√x)) * (d/dx)((sinx)^x + sin^−1√x)
Step 4: Differentiate the right side of the equation using the product rule: (d/dx)((sinx)^x + sin^−1√x) = (d/dx)(sinx)^x + (d/dx)sin^−1√x
Step 5: Differentiate both terms on the right side of the equation: (d/dx)(sinx)^x = x*(sinx)^(x-1)(d/dx)(sinx) (d/dx)sin^−1√x = (1/(2√x))*(d/dx)(x^2)
Step 6: Substitute the derivatives into the equation: (d/dx) ln((sinx)^x + sin^−1√x) = (1/((sinx)^x + sin^−1√x)) * (x*(sinx)^(x-1)(d/dx)(sinx) + (1/(2√x))*(d/dx)(x^2))
Step 7: Simplify the equation: (d/dx) ln((sinx)^x + sin^−1√x) = (x*(sinx)^(x-1)cosx + (1/(2√x))*2x)/((sinx)^x + sin^−1√x)
Question:
Differentiate the function w.r.t. x. x^x−2^sinx
Answer:
Step 1: Take the natural logarithm of both sides of the equation: ln(x^x−2^sinx)
Step 2: Use the chain rule to differentiate: (x^x)(lnx)−2^sinx(ln2)cosx
Step 3: Simplify the expression: x^xlnx−2^sinxln2cosx
Question:
Differentiate the function w.r.t. x. √[(x−1)(x−2)/(x−3)(x−4)(x−5)]
Answer:
Step 1: Simplify the function as follows: √[(x-1)(x-2)/(x-3)(x-4)(x-5)] = (x-1)(x-2)/√[(x-3)(x-4)(x-5)]
Step 2: Take the derivative of both sides with respect to x: d/dx [(x-1)(x-2)/√[(x-3)(x-4)(x-5)]]
Step 3: Apply the chain rule to the left side: [d/dx (x-1)(x-2)]/√[(x-3)(x-4)(x-5)] + (x-1)(x-2)[d/dx √[(x-3)(x-4)(x-5)]]
Step 4: Take the derivative of the numerator: [2(x-2) - (x-1)(1)]/√[(x-3)(x-4)(x-5)] + (x-1)(x-2)[(-1/2)((x-3)(x-4)(x-5)^(-1/2))(3x-15)]
Step 5: Simplify the expression: [(2x-4) - (x-1)]/√[(x-3)(x-4)(x-5)] + (x-1)(x-2)(3x-15)((x-3)(x-4)(x-5)^(-1/2))
Question:
Differentiate the function w.r.t. x. (xcosx)^x+(xsinx)^1/x
Answer:
Step 1: Take the natural logarithm of both sides. ln[(xcosx)^x+(xsinx)^1/x]
Step 2: Apply the chain rule. x[(xcosx)^x]⋅ln(xcosx) + (1/x)[(xsinx)^1/x]⋅ln(xsinx)
Step 3: Apply the power rule. x[xcosx]^(x-1)⋅(cosx+xsinx) + (1/x)[xsinx]^(-1/x-1)⋅(cosx-sinx)
Step 4: Simplify. xcosx^(x-1)⋅(cosx+xsinx) + (1/x)sinx^(-1/x-1)⋅(cosx-sinx)
Question:
Differentiate the function w.r.t. x. (x+3)^2.(x+4)^3.(x+5)^4
Answer:
Step 1: Take the derivative of the first term, (x + 3)2.
d/dx [ (x + 3)2 ] = 2(x + 3)
Step 2: Take the derivative of the second term, (x + 4)3.
d/dx [ (x + 4)3 ] = 3(x + 4)2
Step 3: Take the derivative of the third term, (x + 5)4.
d/dx [ (x + 5)4 ] = 4(x + 5)3
Step 4: Multiply the derivatives of the three terms together.
2(x + 3) * 3(x + 4)2 * 4(x + 5)3
Step 5: Simplify the expression.
24(x + 3)(x + 4)2(x + 5)3
Question:
Differentiate the function w.r.t. x. (logx)^cosx
Answer:
Step 1: Take the natural log of both sides: ln [(logx)^cosx]
Step 2: Use the Chain Rule to differentiate the expression: cosx * (1/x) * (1/lnx)
Step 3: Simplify the expression: cosx/xlnx
Question:
Find dy/dx of y^x=x^y
Answer:
Step 1: Take the natural log of both sides of the equation: ln(y^x) = ln(x^y)
Step 2: Use the chain rule to differentiate both sides: (1/y)ln(y) dy/dx = (1/x)ln(x) dy/dx
Step 3: Isolate dy/dx on the left side: dy/dx = (x/y)ln(x/y) ln(y)
Question:
Differentiate the function w.r.t. x. x^sinx+(sinx)^cosx
Answer:
-
Take the derivative of the inner function (sinx): d/dx (sinx) = cosx
-
Take the derivative of the outer function (x^sinx): d/dx (x^sinx) = sinx x^(sinx-1)
-
Take the derivative of the second term (sinx)^cosx: d/dx (sinx)^cosx = cosx (sinx)^(cosx-1) d/dx (sinx)
-
Add the derivatives of the two terms: d/dx (x^sinx+(sinx)^cosx) = sinx x^(sinx-1) + cosx (sinx)^(cosx-1) d/dx (sinx)
-
Simplify: d/dx (x^sinx+(sinx)^cosx) = sinx x^(sinx-1) + cosx (sinx)^(cosx-1) cosx
Question:
Differentiate the function w.r.t. x. cosx.cos2x.cos3x
Answer:
Step 1: Take the derivative of the function w.r.t. x.
Step 2: Apply the product rule to differentiate the function.
Step 3: Simplify the expression to obtain the final result.
Answer: -sin(x)cos2x.cos3x - 2cosx.sin2x.cos3x - 3cosx.cos2x.sin3x
ਜੇਈਈ ਅਧਿਐਨ ਸਮੱਗਰੀ (ਗਣਿਤ)
01 ਸਬੰਧ ਅਤੇ ਕਾਰਜ
02 ਉਲਟ ਤਿਕੋਣਮਿਤੀ ਫੰਕਸ਼ਨ
03 ਮੈਟ੍ਰਿਕਸ
04 ਨਿਰਧਾਰਕ
05 ਨਿਰੰਤਰਤਾ ਅਤੇ ਵਿਭਿੰਨਤਾ
06 ਡੈਰੀਵੇਟਿਵਜ਼ ਦੀ ਐਪਲੀਕੇਸ਼ਨ
07 ਅਟੁੱਟ
08 ਇੰਟੀਗ੍ਰੇਲਸ ਦੀ ਐਪਲੀਕੇਸ਼ਨ
09 ਵੈਕਟਰ
10 ਤਿੰਨ ਅਯਾਮੀ ਜਿਓਮੈਟਰੀ
11 ਲੀਨੀਅਰ ਪ੍ਰੋਗਰਾਮਿੰਗ
12 ਸੰਭਾਵਨਾ