15 ਅੰਕੜੇ

ਅਭਿਆਸ 01

Question:

Find the mean deviation about the mean for the data Height of cms Number of boys 95-105 9 105-115 13 115-125 26 125-135 30 135-145 12 145-155 10

Answer:

Step 1: Find the mean of the data.

Mean = (95 + 105 + 115 + 125 + 135 + 145 + 155) ÷ 7 Mean = 115

Step 2: Find the deviation of each data point from the mean.

95-115 = -20 105-115 = -10 115-115 = 0 125-115 = 10 135-115 = 20 145-115 = 30 155-115 = 40

Step 3: Find the mean of the deviations.

Mean deviation = (-20 + -10 + 0 + 10 + 20 + 30 + 40) ÷ 7 Mean deviation = 10

Question:

Find the mean deviation about the mean for the data: 4,7,8,9,10,12,13,17

Answer:

Step 1: Find the mean of the data.

Mean = (4 + 7 + 8 + 9 + 10 + 12 + 13 + 17) / 8

Mean = 10

Step 2: Find the deviation of each data point from the mean.

4: 4 - 10 = -6 7: 7 - 10 = -3 8: 8 - 10 = -2 9: 9 - 10 = -1 10: 10 - 10 = 0 12: 12 - 10 = 2 13: 13 - 10 = 3 17: 17 - 10 = 7

Step 3: Find the absolute value of each deviation.

|-6| = 6 |-3| = 3 |-2| = 2 |-1| = 1 |0| = 0 |2| = 2 |3| = 3 |7| = 7

Step 4: Find the mean of the absolute values.

Mean Deviation = (6 + 3 + 2 + 1 + 0 + 2 + 3 + 7) / 8

Mean Deviation = 3.375

Question:

Calculate the mean deviation about median age for the age distribution of 100 persons given below : Age Number 16-20 5 21-25 6 26-30 12 31-35 14 36-40 26 41-45 12 46-50 16 51-55 9

Answer:

Step 1: Calculate the median age of the given age distribution.

Median Age = (31 + 36) / 2 = 33.5

Step 2: Calculate the absolute deviation of each age group from the median age.

Age Group Number Absolute Deviation 16-20 5 17.5 21-25 6 12.5 26-30 12 6.5 31-35 14 4.5 36-40 26 2.5 41-45 12 8.5 46-50 16 4.5 51-55 9 11.5

Step 3: Calculate the sum of the absolute deviations.

Sum of Absolute Deviations = 17.5 + 12.5 + 6.5 + 4.5 + 2.5 + 8.5 + 4.5 + 11.5 = 77

Step 4: Calculate the mean deviation about median age.

Mean Deviation about Median Age = Sum of Absolute Deviations / Total Number of Persons = 77 / 100 = 0.77

Question:

Find the mean deviation about the median for the data 36,72,46,42,60,45,53,46,51,49

Answer:

Step 1: Arrange the data in ascending order: 36, 42, 45, 46, 46, 49, 51, 53, 60, 72

Step 2: Find the median of the data: 46

Step 3: Calculate the deviation of each data point from the median: -10, -4, -1, 0, 0, 3, 5, 7, 14, 26

Step 4: Find the mean of the deviation: (-10 + -4 + -1 + 0 + 0 + 3 + 5 + 7 + 14 + 26) / 10 = 4.1

Question:

Find the mean deviation about the mean for the data 38,70,48,40,42,55,63,46,54,44

Answer:

Step 1: Find the mean of the data.

Mean = (38 + 70 + 48 + 40 + 42 + 55 + 63 + 46 + 54 + 44) / 10

Mean = 48.2

Step 2: Subtract the mean from each data point.

38 - 48.2 = -10.2

70 - 48.2 = 21.8

48 - 48.2 = -0.2

40 - 48.2 = -8.2

42 - 48.2 = -6.2

55 - 48.2 = 6.8

63 - 48.2 = 14.8

46 - 48.2 = -2.2

54 - 48.2 = 5.8

44 - 48.2 = -4.2

Step 3: Take the absolute value of each difference.

|-10.2| = 10.2

|21.8| = 21.8

|-0.2| = 0.2

|-8.2| = 8.2

|-6.2| = 6.2

|6.8| = 6.8

|14.8| = 14.8

|-2.2| = 2.2

|5.8| = 5.8

|-4.2| = 4.2

Step 4: Add the absolute values together.

10.2 + 21.8 + 0.2 + 8.2 + 6.2 + 6.8 + 14.8 + 2.2 + 5.8 + 4.2 = 85

Step 5: Divide the sum of the absolute values by the number of data points.

85 / 10 = 8.5

Step 6: The mean deviation about the mean is 8.5.

Question:

Find the mean deviation about the median for the data 13,17,16,14,11,13,10,16,11,18,12,17

Answer:

Step 1: Arrange the data in order from least to greatest: 10, 11, 11, 12, 13, 13, 14, 16, 16, 17, 17, 18

Step 2: Find the median of the data: 13

Step 3: Subtract the median from each data point: -3, -2, -2, -1, 0, 0, 1, 3, 3, 4, 4, 5

Step 4: Take the absolute value of each result: 3, 2, 2, 1, 0, 0, 1, 3, 3, 4, 4, 5

Step 5: Add up the absolute values: 21

Step 6: Divide the sum by the number of data points: 21/12 = 1.75

Therefore, the mean deviation about the median is 1.75.

Question:

Find the mean deviation about the mean for the data in Exercises 5 and 6. xi​ 5 10 15 20 25 fi​ 7 4 6 3 5

Answer:

Step 1: Find the mean (x̅): x̅ = (5 + 10 + 15 + 20 + 25)/5 x̅ = 15

Step 2: Find the deviation of each value (xi - x̅): 5 - 15 = -10 10 - 15 = -5 15 - 15 = 0 20 - 15 = 5 25 - 15 = 10

Step 3: Find the absolute value of the deviations: |-10| = 10 |-5| = 5 |0| = 0 |5| = 5 |10| = 10

Step 4: Multiply each absolute value by the frequency (fi): 10 x 7 = 70 5 x 4 = 20 0 x 6 = 0 5 x 3 = 15 10 x 5 = 50

Step 5: Add all of the products together: 70 + 20 + 0 + 15 + 50 = 155

Step 6: Divide the sum of the products by the total frequency (N): 155/20 = 7.75

The mean deviation about the mean is 7.75.

Question:

Find the mean deviation about the mean for the data in xi​ 10 30 50 70 90 fi​ 4 24 28 16 8

Answer:

Step 1: Calculate the mean (x̅) of the data:

x̅ = (10 + 30 + 50 + 70 + 90)/5

x̅ = 40

Step 2: Calculate the deviation of each data point from the mean:

xi - x̅

10 - 40 = -30 30 - 40 = -10 50 - 40 = 10 70 - 40 = 30 90 - 40 = 50

Step 3: Square each deviation:

(-30)2 = 900 (-10)2 = 100 102 = 100 302 = 900 502 = 2500

Step 4: Multiply each squared deviation by its frequency:

900 x 4 = 3600 100 x 24 = 2400 100 x 28 = 2800 900 x 16 = 14400 2500 x 8 = 20000

Step 5: Sum the products:

3600 + 2400 + 2800 + 14400 + 20000 = 43200

Step 6: Divide the sum by the total frequency (N):

43200/5 = 8640

Step 7: Take the square root of the result:

√8640 = 92.8

Therefore, the mean deviation about the mean for the given data is 92.8.

Question:

Find the mean deviation from the mean for the following data: xi​ 5 7 9 10 12 15 fi​ 8 6 2 2 2 6

Answer:

Step 1: Find the mean of the data.

Mean = (58 + 76 + 92 + 102 + 122 + 156) / (8 + 6 + 2 + 2 + 2 + 6)

Mean = 10

Step 2: Find the deviation of each data point from the mean.

Deviation of x1 = 5 - 10 = -5 Deviation of x2 = 7 - 10 = -3 Deviation of x3 = 9 - 10 = -1 Deviation of x4 = 10 - 10 = 0 Deviation of x5 = 12 - 10 = 2 Deviation of x6 = 15 - 10 = 5

Step 3: Find the mean of the deviations.

Mean Deviation = (-5 + -3 + -1 + 0 + 2 + 5) / 6

Mean Deviation = 0.5

Question:

Find the mean deviation from the median for the following data: xi​ 15 21 27 30 fi​ 3 5 6 7

Answer:

Step 1: Find the median of the data.

The median is 24.5, which is the average of 21 and 27.

Step 2: Find the absolute value of the difference between each value and the median.

15 - 24.5 = -9.5 21 - 24.5 = -3.5 27 - 24.5 = 2.5 30 - 24.5 = 5.5

Step 3: Multiply each absolute value by the corresponding frequency.

-9.5 x 3 = -28.5 -3.5 x 5 = -17.5 2.5 x 6 = 15 5.5 x 7 = 38.5

Step 4: Add all of the products together.

-28.5 + -17.5 + 15 + 38.5 = 8.5

Step 5: Divide the sum of the products by the total frequency.

8.5 / 21 = 0.4

The mean deviation from the median is 0.4.

Question:

Find the mean deviation about the mean for the data: Income per day Numbers of persons 0-100 4 100-200 8 200-300 9 300-400 10 400-500 7 500-600 5 600-700 4 700-800 3

Answer:

Step 1: Find the mean of the data.

Mean = (40 + 8100 + 9200 + 10300 + 7400 + 5500 + 4600 + 3700)/(4+8+9+10+7+5+4+3)

Mean = (0 + 800 + 1800 + 3000 + 2800 + 2500 + 2400 + 2100)/(4+8+9+10+7+5+4+3)

Mean = 14300/(4+8+9+10+7+5+4+3)

Mean = 14300/47

Mean = 303.19

Step 2: Find the deviation of each value from the mean.

Deviation of 0-100 = (0 - 303.19) = -303.19

Deviation of 100-200 = (100 - 303.19) = -203.19

Deviation of 200-300 = (200 - 303.19) = -103.19

Deviation of 300-400 = (300 - 303.19) = -3.19

Deviation of 400-500 = (400 - 303.19) = 96.81

Deviation of 500-600 = (500 - 303.19) = 196.81

Deviation of 600-700 = (600 - 303.19) = 296.81

Deviation of 700-800 = (700 - 303.19) = 396.81

Step 3: Find the mean deviation about the mean.

Mean Deviation about the mean = (|-303.19| + |-203.19| + |-103.19| + |-3.19| + |96.81| + |196.81| + |296.81| + |396.81|)/8

Mean Deviation about the mean = (303.19 + 203.19 + 103.19 + 3.19 + 96.81 + 196.81 + 296.81 + 396.81)/8

Mean Deviation about the mean = 1403.19/8

Mean Deviation about the mean = 175.40

Question:

Find the mean deviation about median for the following data: Marks Number of girls 0-10 6 10-20 8 20-30 14 30-40 16 40-50 4 50-60 2

Answer:

Step 1: Find the median by arranging the data in ascending order: Marks Number of girls 0-10 6 10-20 8 20-30 14 30-40 16 40-50 4 50-60 2

Median = 20-30 (14 girls)

Step 2: Calculate the absolute deviation of each value from the median: Marks Number of girls Deviation from Median 0-10 6 -8 10-20 8 -6 20-30 14 0 30-40 16 6 40-50 4 -10 50-60 2 -12

Step 3: Add all the absolute deviations: -8 + -6 + 0 + 6 + -10 + -12 = -30

Step 4: Divide the sum of absolute deviations by the total number of values: -30/6 = -5

Therefore, the mean deviation about median is -5.

ਜੇਈਈ ਅਧਿਐਨ ਸਮੱਗਰੀ (ਗਣਿਤ)

01 ਸੈੱਟ

02 ਸਬੰਧ ਅਤੇ ਕਾਰਜ

03 ਤ੍ਰਿਕੋਣਮਿਤੀਕ ਫੰਕਸ਼ਨ

04 ਗਣਿਤਿਕ ਇੰਡਕਸ਼ਨ ਦਾ ਸਿਧਾਂਤ

05 ਕੰਪਲੈਕਸ ਨੰਬਰ ਅਤੇ ਕੁਆਡ੍ਰੈਟਿਕ ਸਮੀਕਰਨ

06 ਰੇਖਿਕ ਅਸਮਾਨਤਾਵਾਂ

07 ਪਰਮਿਊਟੇਸ਼ਨ ਅਤੇ ਕੰਬੀਨੇਸ਼ਨ

08 ਬਾਇਨੋਮਿਅਲ ਥਿਊਰਮ

09 ਕ੍ਰਮ ਅਤੇ ਲੜੀ

10 ਸਿੱਧੀਆਂ ਲਾਈਨਾਂ ਦੀ ਕਸਰਤ

10 ਸਿੱਧੀਆਂ ਰੇਖਾਵਾਂ ਫੁਟਕਲ

11 ਕੋਨਿਕ ਸੈਕਸ਼ਨ

12 ਤਿੰਨ ਅਯਾਮੀ ਜਿਓਮੈਟਰੀ ਦੀ ਜਾਣ-ਪਛਾਣ

13 ਸੀਮਾਵਾਂ ਅਤੇ ਡੈਰੀਵੇਟਿਵਜ਼

14 ਗਣਿਤਿਕ ਤਰਕ

15 ਅੰਕੜੇ

16 ਸੰਭਾਵਨਾ