12 ਤਿੰਨ ਅਯਾਮੀ ਜਿਓਮੈਟਰੀ ਦੀ ਜਾਣ-ਪਛਾਣ

ਅਭਿਆਸ 3

Question:

Find the coordinates of the point which divides the line segment joining the points (−2,3,5) and (1,−4,6) in the ratio (i) 2:3 internally (ii) 2:3 externally.

Answer:

(i) Internally:

Let the coordinates of the point be (x, y, z).

Then, according to the given condition,

\frac{|\overrightarrow{PQ}|}{|\overrightarrow{PR}|} = \frac{2}{3}

Where PQ and PR are the vectors joining the points (−2,3,5) and (1,−4,6) to the point (x,y,z) respectively.

Therefore,

|\overrightarrow{PQ}| = 2|\overrightarrow{PR}|

⇒ (x + 2)^2 + (y - 3)^2 + (z - 5)^2 = 4(x - 1)^2 + (y + 4)^2 + (z - 6)^2

⇒ (x + 2)^2 + (y - 3)^2 + (z - 5)^2 = 4(x^2 - 2x + 1) + (y^2 + 8y + 16) + (z^2 - 12z + 36)

⇒ x^2 + 4x + 4 + y^2 - 6y + 9 + z^2 - 10z + 25 = 4x^2 - 8x + 4 + y^2 + 8y + 16 + z^2 - 12z + 36

⇒ -3x^2 - 4x + y^2 - 6y + z^2 - 10z + 9 = 0

⇒ x^2 + 4x + y^2 - 6y + z^2 - 10z = -9

⇒ x^2 + 4x + 4 + y^2 - 6y + 9 + z^2 - 10z + 25 = -9 + 25

⇒ x^2 + 4x + y^2 - 6y + z^2 - 10z = 16

⇒ x^2 + 4x + 16 + y^2 - 6y + 36 + z^2 - 10z = 16 + 36

⇒ x^2 + 4x + 16 + y^2 - 6y + 36 + z^2 - 10z = 52

Comparing the coefficients of x^2, y^2 and z^2, we get

x = -2, y = 1 and z = 4

Therefore, the coordinates of the point which divides the line segment joining the points (−2,3,5) and (1,−4,6) internally in the ratio 2:3 is (−2, 1, 4).

(ii) Externally:

Let the coordinates of the point be (x, y, z).

Then, according to the given condition,

\frac{|\overrightarrow{PQ}|}{|\overrightarrow{PR}|} = \frac{2}{3}

Where PQ and PR are the vectors joining the points (−2,3,5) and (1,−4,6) to the point (x,y,z) respectively.

Therefore,

|\overrightarrow{PQ}| = \frac{2}{3}|\overrightarrow{PR}|

⇒ (x + 2)^2 + (y - 3)^2 + (z - 5)^2 = \frac{4}{9}(x - 1)^2 + \frac{1}{9}(y + 4)^2 + \frac{1}{9}(z - 6)^2

⇒ (x + 2)^2 + (y - 3)^2 + (z - 5)^2 = \frac{4}{9}(x^2 - 2x + 1) + \frac{1}{9}(y^2 + 8y + 16) + \frac{1}{9}(z^2 - 12z + 36)

⇒ x^2 + 4x + 4 + y^2 - 6y + 9 + z^2 - 10z + 25 = \frac{4}{9}(x^2 - 2x + 1) + \frac{1}{9}(y^2 + 8y + 16) + \frac{1}{9}(z^2 - 12z + 36)

⇒ \frac{9}{4}x^2 + 6x + \frac{9}{4} + \frac{9}{4}y^2 - \frac{9}{2}y + \frac{9}{4}z^2 - \

Question:

Using section formula show that the points A (2,−3,4),B (−1,2,1) and C(0,1/3,2) are collinear.

Answer:

Step 1: Find the length of AB

AB = √((−1−2)2 + (2−(−3))2 + (1−4)2 )

= √(32 + 52 + (−3)2 )

= √(9 + 25 + 9)

= √43

Step 2: Find the length of BC

BC = √((0−(−1))2 + (1/3−2)2 + (2−1)2 )

= √(12 + (−5/3)2 + 12 )

= √(1 + 25/9 + 1)

= √(27/9)

Step 3: Find the length of AC

AC = √((2−0)2 + (−3−1/3)2 + (4−2)2 )

= √(22 + (−19/3)2 + 22 )

= √(4 + 361/9 + 4)

= √(369/9)

Step 4: Apply Section Formula

AB/AC = BC/BC

√43/√(369/9) = √(27/9)/√(27/9)

43/369 = 27/27

1 = 1

Hence, the points A (2,−3,4),B (−1,2,1) and C(0,1/3,2) are collinear.

Question:

Find the ratio in which the YZ-plane divides the line segment formed by joining the points (−2,4,7) and (3,−5,8).

Answer:

Step 1: Calculate the midpoint of the line segment. Midpoint = ( ( -2 + 3 )/2 , ( 4 + -5 )/2 , ( 7 + 8 )/2 ) = ( (1)/2 , (-1)/2 , (15)/2 ) = ( 0.5 , -0.5 , 7.5 )

Step 2: Calculate the distance between the two points. Distance = √((3-(-2))2 + (-5-4)2 + (8-7)2) = √(52 + (-9)2 + 12) = √(25 + 81 + 1) = √107

Step 3: Calculate the ratio in which the YZ-plane divides the line segment. Ratio = Distance from midpoint to (−2,4,7) / Total Distance = √((-2-0.5)2 + (4-(-0.5))2 + (7-7.5)2) / √107 = √(2.52 + 4.52 + (-0.5)2) / √107 = √(6.25 + 20.25 + 0.25) / √107 = √(26.75) / √107 = 5.2 / 10.3 = 0.5048543689320389

Question:

Find the coordinates of the points which trisect the line segment joining the points P(4,2,−6) and Q(10,−16,6)

Answer:

  1. Calculate the midpoint of the line segment joining the points P and Q by using the formula: Midpoint = (P + Q)/2

  2. Substitute the given coordinates in the formula: Midpoint = ((4,2,-6) + (10,-16,6))/2

  3. Simplify the equation to get the coordinates of the midpoint: Midpoint = (14,-7,0)/2

  4. Divide each coordinate by 2 to get the coordinates of the midpoint: Midpoint = (7,-3.5,0)

Therefore, the coordinates of the points which trisect the line segment joining the points P(4,2,-6) and Q(10,-16,6) are (7,-3.5,0).

Question:

Given that P(3,2,−4),Q(5,4,−6) and R(9,8,−10) are collinear. Find the ratio in which Q divides PR.

Answer:

Step 1: Calculate the distance between points P and Q. Distance between P and Q = √((5-3)^2 + (4-2)^2 + (-6-(-4))^2) = √(4 + 4 + 4) = √12 = 2√3

Step 2: Calculate the distance between points P and R. Distance between P and R = √((9-3)^2 + (8-2)^2 + (-10-(-4))^2) = √(36 + 36 + 36) = √108 = 6√3

Step 3: Calculate the ratio in which Q divides PR. Ratio in which Q divides PR = Distance between P and Q / Distance between P and R = 2√3 / 6√3 = 1/3

ਜੇਈਈ ਅਧਿਐਨ ਸਮੱਗਰੀ (ਗਣਿਤ)

01 ਸੈੱਟ

02 ਸਬੰਧ ਅਤੇ ਕਾਰਜ

03 ਤ੍ਰਿਕੋਣਮਿਤੀਕ ਫੰਕਸ਼ਨ

04 ਗਣਿਤਿਕ ਇੰਡਕਸ਼ਨ ਦਾ ਸਿਧਾਂਤ

05 ਕੰਪਲੈਕਸ ਨੰਬਰ ਅਤੇ ਕੁਆਡ੍ਰੈਟਿਕ ਸਮੀਕਰਨ

06 ਰੇਖਿਕ ਅਸਮਾਨਤਾਵਾਂ

07 ਪਰਮਿਊਟੇਸ਼ਨ ਅਤੇ ਕੰਬੀਨੇਸ਼ਨ

08 ਬਾਇਨੋਮਿਅਲ ਥਿਊਰਮ

09 ਕ੍ਰਮ ਅਤੇ ਲੜੀ

10 ਸਿੱਧੀਆਂ ਲਾਈਨਾਂ ਦੀ ਕਸਰਤ

10 ਸਿੱਧੀਆਂ ਰੇਖਾਵਾਂ ਫੁਟਕਲ

11 ਕੋਨਿਕ ਸੈਕਸ਼ਨ

12 ਤਿੰਨ ਅਯਾਮੀ ਜਿਓਮੈਟਰੀ ਦੀ ਜਾਣ-ਪਛਾਣ

13 ਸੀਮਾਵਾਂ ਅਤੇ ਡੈਰੀਵੇਟਿਵਜ਼

14 ਗਣਿਤਿਕ ਤਰਕ

15 ਅੰਕੜੇ

16 ਸੰਭਾਵਨਾ