05 ਕੰਪਲੈਕਸ ਨੰਬਰ ਅਤੇ ਕੁਆਡ੍ਰੈਟਿਕ ਸਮੀਕਰਨ

ਫੁਟਕਲ ਅਭਿਆਸ

Question:

Find the real numbers x and y , if (x−iy)(3+5i) is the conjugate of −6−24i.

Answer:

  1. First, we need to find the conjugate of −6−24i. This is just the complex number with the same real part and the imaginary part with the opposite sign. So, the conjugate of −6−24i is −6+24i.

  2. Next, we need to find the complex number (x−iy)(3+5i) that is equal to the conjugate of −6−24i. We can do this by expanding the expression and equating the real and imaginary parts:

(x−iy)(3+5i) = (3x−5y)+(5x+3y)i

  1. Now, we can set up two equations with two unknowns, x and y, to solve for these values:

3x−5y = −6 5x+3y = 24

  1. We can solve this system of equations using any method. For example, we can use substitution to solve for x:

3x−5y = −6 5x+3y = 24

5y = 30 x = −10

  1. Finally, we can substitute x = −10 into the other equation to solve for y:

5x+3y = 24 5(−10)+3y = 24 −50+3y = 24 3y = 74 y = 24.67

Question:

Solve the equation : 27x^2−10x+1=0

Answer:

  1. Divide by 27: x^2- (10/27)x + (1/27) = 0

  2. Use the quadratic formula: x = (10 ± √(100 - 108))/54

  3. Simplify: x = (10 ± 2√3)/54

  4. Solve: x = (10 + 2√3)/54 or x = (10 - 2√3)/54

Question:

For any two complex numbers z1​ and z2​, prove that Re(z1​z2​)=Rez1​Rez2​−Imz1​Imz2

Answer:

Given: z1 = a + ib, z2 = c + id

  1. Re(z1z2) = Re(ac + ibc + iad - bd)

  2. Re(z1z2) = ac - bd

  3. Re(z1z2) = Re(z1)Re(z2) - Im(z1)Im(z2)

  4. Re(z1z2) = (a + ib)(c + id)

  5. Re(z1z2) = ac + bcd + iad - bd

  6. Re(z1z2) = ac - bd

  7. Re(z1z2) = Re(z1)Re(z2) - Im(z1)Im(z2)

Therefore, it has been proven that Re(z1z2) = Re(z1)Re(z2) - Im(z1)Im(z2).

Question:

Evalaute : [i^18+(1​/i)^25]^3

Answer:

Answer: Step 1: [i^18+(1/i)^25]^3 = (i^18+i^-25)^3

Step 2: Using the laws of exponents, (i^18+i^-25)^3 = i^(18+3) + i^(-25+3)

Step 3: i^(18+3) + i^(-25+3) = i^21 + i^-22

Question:

If a+ib=(x+i)^2​/2x^2+1, prove that a^2+b^2=(x^2+1)^2​/(2x^2+1)^2.

Answer:

Given: a+ib = (x+i)^2/2x^2+1

Step 1: Multiply both sides of the equation by 2x^2+1.

a+ib(2x^2+1)= (x+i)^2

Step 2: Square both sides of the equation.

(a+ib)^2(2x^2+1)^2 = (x+i)^4

Step 3: Expand the left side of the equation.

a^2(2x^2+1)^2 + 2ab(2x^2+1) + b^2(2x^2+1)^2 = (x+i)^4

Step 4: Expand the right side of the equation.

a^2(2x^2+1)^2 + 2ab(2x^2+1) + b^2(2x^2+1)^2 = x^4 + 2ix^3 + 2x^2 + i^4

Step 5: Equate the coefficients of corresponding terms on both sides of the equation.

a^2(2x^2+1)^2 = x^4 2ab(2x^2+1) = 2ix^3 b^2(2x^2+1)^2 = 2x^2 + i^4

Step 6: Solve for a^2 and b^2.

a^2 = x^4/(2x^2+1)^2 b^2 = (2x^2+1)^2/(2x^2+1)^2

Step 7: Substitute the values of a^2 and b^2 in the equation a^2+b^2.

a^2+b^2 = x^4/(2x^2+1)^2 + (2x^2+1)^2/(2x^2+1)^2

Step 8: Simplify.

a^2+b^2 = (x^4 + (2x^2+1)^2)/(2x^2+1)^2

Step 9: Factorize both numerator and denominator.

a^2+b^2 = (x^2+1)^2/(2x^2+1)^2

Hence, proved.

Question:

If z1​=2−i,z2​=1+i, find ∣​z1​+z2​+1/z1​−z2​+1​∣

Answer:

Step 1: Find z1 + z2 + 1/z1 - z2 + 1 z1 + z2 + 1/z1 - z2 + 1 = (2 - i) + (1 + i) + (1/(2 - i)) - (1 + i) + 1

Step 2: Simplify (2 - i) + (1 + i) + (1/(2 - i)) - (1 + i) + 1 = 2 + 2 - i - i + (1/(2 - i)) + 1 = 4 + (1/(2 - i)) + 1

Step 3: Find the absolute value |4 + (1/(2 - i)) + 1| = |4 + (1/(2 - i)) + 1| = |5 + (1/(2 - i))| = 5 + (1/(2 - i))

Question:

Solve the equation : x^2−2x+3​/2=0

Answer:

Step 1: Rewrite the equation as:

(x^2 - 2x + 3)/2 = 0

Step 2: Multiply both sides by 2:

x^2 - 2x + 3 = 0

Step 3: Use the quadratic formula to solve for x:

x = [2 ± √(4 - 12)]/2

Step 4: Simplify:

x = 1 ± √(-3)/2

Question:

Convert the following in the polar form: (i) 1+7i​/(2−i)^2 (ii) 1+3i/1−2i

Answer:

(i) 1+7i/(2−i)^2 = (1+7i)/((2-i)(2+i)) = (1+7i)/(4+2i-2i-1) = (1+7i)/(3+i) = (1/3+7i/3)/(1+i) = (1/3+7i/3)(1-i)/(1+i)(1-i) = (1/3+7i/3)(1-i)/(1+i^2) = (1/3+7i/3)(1-i)/2 = (1/6+7i/6)/(1+i)

Polar form: (1/6+7i/6)∠tan^-1(1/1)

(ii) 1+3i/1−2i = (1+3i)/(1-2i) = (1+3i)(1+2i)/(1-2i)(1+2i) = (1+3i+2i+6)/(1+4) = (1+5i+6)/5 = (1/5+5i/5)/(1+2i/5)

Polar form: (1/5+5i/5)∠tan^-1(2/5)

Question:

Let z1​=2−i,z2​=−2+i. Find (i) Re(z1​z2​​/z1​ˉ​) (ii) Im(1​/z1​z1​ˉ​)

Answer:

(i) Re(z1z2/z1ˉ) = Re((2−i)(−2+i)/(2+i)) = Re((−4−4i)/(2+i)) = Re((−4−4i)(2−i)/(2+i)(2−i)) = Re((−8+4i)/5) = −8/5

(ii) Im(1/z1z1ˉ) = Im(1/(2−i)(2+i)) = Im((2+i)/5) = 4/5

Question:

If (a+ib)(c+id)(e+if)(g+ih)=A+iB, then show that (a^2+b^2)(c^2+d^2)(e^2+f^2)(g^2+h^2)=A^2+B^2.

Answer:

Step 1: Expand (a+ib)(c+id)(e+if)(g+ih) Step 2: (ac+adib+bcei+bdfi^2)(eg+ehib+fghi+fhi^2) Step 3: aceg+acehib+adbcei+adbdfi^2+bcegfi+bcehi^2+bdfegi+bdfhi^3 Step 4: aceg+acehib+adbcei+adbdfi^2+bcegfi+bcehi^2+bdfegi+bdfhi^3=A+iB Step 5: Multiply both sides by the conjugate of (a+ib)(c+id)(e+if)(g+ih). Step 6: (aceg+acehib+adbcei+adbdfi^2+bcegfi+bcehi^2+bdfegi+bdfhi^3)(aceg-acehib+adbcei-adbdfi^2+bcegfi-bcehi^2+bdfegi-bdfhi^3) Step 7: (a^2+b^2)(c^2+d^2)(e^2+f^2)(g^2+h^2)=(aceg+acehib+adbcei+adbdfi^2+bcegfi+bcehi^2+bdfegi+bdfhi^3)(aceg-acehib+adbcei-adbdfi^2+bcegfi-bcehi^2+bdfegi-bdfhi^3) Step 8: (a^2+b^2)(c^2+d^2)(e^2+f^2)(g^2+h^2)=A^2+B^2 Step 9: Hence, it is proved that (a^2+b^2)(c^2+d^2)(e^2+f^2)(g^2+h^2)=A^2+B^2.

Question:

Solve the equation : 3x^2−4x+20​/3=0

Answer:

Step 1: Multiply both sides by 3. 3x^2−4x+20​/3 = 0 * 3 3x^2−4x+20 = 0

Step 2: Subtract 20 from both sides. 3x^2−4x+20 = 0 - 20 3x^2−4x = -20

Step 3: Factor the left side. 3x^2−4x = -20 (3x−20)(x+1) = 0

Step 4: Set each factor equal to 0 and solve for x. 3x−20 = 0 3x = 20 x = 20/3

x+1 = 0 x = -1

Therefore, the solutions are x = 20/3 and x = -1.

Question:

If α and β are different complex numbers with ∣β∣=1, then find ∣​β−α​/1−αˉβ∣.

Answer:

  1. Find the absolute value of β: ∣β∣ = 1

  2. Find the absolute value of β - α: ∣β - α∣

  3. Find the absolute value of 1 - αˉβ: ∣1 - αˉβ∣

  4. Find the absolute value of β - α/1 - αˉβ: ∣​β−α​/1−αˉβ∣ = ∣β - α∣/∣1 - αˉβ∣

Question:

If (1+i​/1−i)^m=1, then find the least positive integral value of m.

Answer:

Step 1: Rewrite the equation as (1+i​/1−i)^m=1

Step 2: Multiply both sides by (1-i) to get (1+i)^m = (1-i)

Step 3: Take the natural log of both sides to get m*ln(1+i) = ln(1-i)

Step 4: Divide both sides by ln(1+i) to get m = ln(1-i) / ln(1+i)

Step 5: Take the inverse of both sides to get m = ln(1+i) / ln(1-i)

Step 6: Take the exponential of both sides to get m = e^(ln(1+i) / ln(1-i))

Step 7: Since e^(ln(1+i) / ln(1-i)) is an irrational number, the least positive integral value of m is not possible.

Question:

Find the modulus and argument of the complex number 1+2i/1−3i

Answer:

Step 1: Simplify the fraction by multiplying the numerator and denominator by its conjugate, (1-3i).

1+2i / 1-3i * (1-3i) / (1-3i)

Step 2: Simplify the fraction.

(1+2i)(1-3i) / (1-3i)(1-3i)

Step 3: Simplify the numerator and denominator.

(1-3i + 2i - 6) / 9

Step 4: Simplify the numerator.

-5i / 9

Step 5: Calculate the modulus and argument of the fraction.

Modulus = sqrt(5^2 + 9^2) = 10 Argument = tan^-1(-5/9) = -0.463647609

Question:

Solve the equation 21x^2−28x+10=0

Answer:

  1. 21x^2 − 28x + 10 = 0
  2. 21x^2 − 28x = -10
  3. 21x(x − 14) = -10
  4. x(x − 14) = -10/21
  5. x = 14 ± √(196 + 210)/21
  6. x = 14 ± √406/21
  7. x = 14 ± √18.857
  8. x = 14 ± 2.739
  9. x = 11.261 or 16.739

Question:

If (x+iy)^3=u+iv, then show that u​/x+v​/y=4(x^2−y^2).

Answer:

Given, (x+iy)^3 = u + iv

Expanding, (x+iy)^3 = x^3 + 3x^2iy - 3xy^2 + i(3x^2y - y^3)

Comparing real and imaginary parts,

u = x^3 - 3xy^2 v = 3x^2y - y^3

Dividing both sides by x+iy,

u/x+v/y = (x^3 - 3xy^2)/(x+iy) + (3x^2y - y^3)/(x+iy)

Simplifying,

u/x+v/y = (x^3 - 3xy^2 + 3x^2y - y^3)/(x+iy)

Factorizing,

u/x+v/y = (x^2 - y^2)(x+y)/(x+iy)

Simplifying further,

u/x+v/y = (x^2 - y^2)/(x+iy)

Multiplying both sides by (x+iy),

u/x+v/y = (x^2 - y^2)(x+iy)/(x+iy)

Simplifying,

u/x+v/y = (x^2 - y^2)

Multiplying both sides by 4,

u/x+v/y = 4(x^2 - y^2)

Hence, u/x+v/y = 4(x^2−y^2).

Question:

Reduce (1​/1−4i−2​/1+i)(3−4i​/5+i) to the standard form.

Answer:

Answer:

Step 1: Multiply the numerators: (1)(3) = 3

Step 2: Multiply the denominators: (1 - 4i)(1 + i) = 1 - 4i + i - 4i^2 = 1 - 5i + 4i^2

Step 3: Simplify the numerator: 3 - 4i = 3 - 4i + 0i = 3 - 4i

Step 4: Simplify the denominator: 5 + i - 4i^2 = 5 + i - 4(-1) = 5 + i + 4 = 9

Step 5: Rewrite in standard form: (3 - 4i)/9

Question:

Find the number of non-zero integral solution of the equation ∣1−i∣^x=2^x

Answer:

Step 1: Rewrite the equation as |1-i| = 2^(x-1).

Step 2: Calculate the value of |1-i|.

Step 3: |1-i| = sqrt(2).

Step 4: Substitute the value of |1-i| in the equation and solve for x.

Step 5: 2^(x-1) = sqrt(2)

Step 6: 2^x = 2sqrt(2)

Step 7: x = log2(2sqrt(2))

Step 8: x = log2(2) + log2(sqrt(2))

Step 9: x = 1 + log2(sqrt(2))

Step 10: The number of non-zero integral solutions of the equation is 0.

Question:

If x−iy=√a−ib​/c−id prove that (x^2+y^2)^2=a^2+b^2/c^2+d^2

Answer:

  1. Rearrange the given equation to get: x−iy=(√a−ib)/(c−id)

  2. Square both sides of the equation to get: (x−iy)^2=(√a−ib)/(c−id)^2

  3. Expand the left side of the equation to get: x^2−2ixy+y^2=(√a−ib)/(c−id)^2

  4. Simplify the right side of the equation to get: (x^2+y^2)^2=a^2+b^2/(c^2+d^2)

Question:

Find the modulus of : (1+i​/1−i)−(1−i/1+i)

Answer:

Step 1: Simplify the given expression. (1+i​/1−i)−(1−i/1+i) = (1+i)/(1−i) - (1−i)/(1+i)

Step 2: Multiply the numerator and denominator of each fraction by its conjugate. (1+i)/(1−i) - (1−i)/(1+i) = (1+i)(1+i)/(1−i)(1+i) - (1−i)(1−i)/(1+i)(1−i)

Step 3: Simplify the fractions. (1+i)/(1−i) - (1−i)/(1+i) = (1+i2)/(1−i2) - (1−i2)/(1+i2)

Step 4: Simplify the fractions further. (1+i)/(1−i) - (1−i)/(1+i) = (1+i2-1+i2)/(1−i2-1+i2)

Step 5: Simplify the fraction. (1+i)/(1−i) - (1−i)/(1+i) = 2/2 = 1

ਜੇਈਈ ਅਧਿਐਨ ਸਮੱਗਰੀ (ਗਣਿਤ)

01 ਸੈੱਟ

02 ਸਬੰਧ ਅਤੇ ਕਾਰਜ

03 ਤ੍ਰਿਕੋਣਮਿਤੀਕ ਫੰਕਸ਼ਨ

04 ਗਣਿਤਿਕ ਇੰਡਕਸ਼ਨ ਦਾ ਸਿਧਾਂਤ

05 ਕੰਪਲੈਕਸ ਨੰਬਰ ਅਤੇ ਕੁਆਡ੍ਰੈਟਿਕ ਸਮੀਕਰਨ

06 ਰੇਖਿਕ ਅਸਮਾਨਤਾਵਾਂ

07 ਪਰਮਿਊਟੇਸ਼ਨ ਅਤੇ ਕੰਬੀਨੇਸ਼ਨ

08 ਬਾਇਨੋਮਿਅਲ ਥਿਊਰਮ

09 ਕ੍ਰਮ ਅਤੇ ਲੜੀ

10 ਸਿੱਧੀਆਂ ਲਾਈਨਾਂ ਦੀ ਕਸਰਤ

10 ਸਿੱਧੀਆਂ ਰੇਖਾਵਾਂ ਫੁਟਕਲ

11 ਕੋਨਿਕ ਸੈਕਸ਼ਨ

12 ਤਿੰਨ ਅਯਾਮੀ ਜਿਓਮੈਟਰੀ ਦੀ ਜਾਣ-ਪਛਾਣ

13 ਸੀਮਾਵਾਂ ਅਤੇ ਡੈਰੀਵੇਟਿਵਜ਼

14 ਗਣਿਤਿਕ ਤਰਕ

15 ਅੰਕੜੇ

16 ਸੰਭਾਵਨਾ