03 ਤ੍ਰਿਕੋਣਮਿਤੀਕ ਫੰਕਸ਼ਨ

ਅਭਿਆਸ 02

Question:

Find the principal and general solutions of the following equations:(i) tanx=√3 ​(ii) secx=2 (iii) cotx=−√3 ​(iv) cosecx=−2

Answer:

(i) Principal Solution: x = π/3 + 2πk, where k is any integer General Solution: x = π/3 + 2πk ± 2πn, where k and n are any integers

(ii) Principal Solution: x = π/6 + πk, where k is any integer General Solution: x = π/6 + πk ± πn, where k and n are any integers

(iii) Principal Solution: x = −π/3 + 2πk, where k is any integer General Solution: x = −π/3 + 2πk ± 2πn, where k and n are any integers

(iv) Principal Solution: x = 5π/6 + πk, where k is any integer General Solution: x = 5π/6 + πk ± πn, where k and n are any integers

Question:

tanx=−4​/3, x in quadrant II. Find the value of sin x​/2,cos x​/2,tan x/2

Answer:

  1. sin x/2 = -sqrt(3)/2
  2. cos x/2 = 1/2
  3. tan x/2 = -sqrt(3)/3

Question:

Find the values of other five trigonometric functions if sin x = 3​/5, x lies in second quadrant.

Answer:

Step 1: Since x lies in the second quadrant, the value of x will be in the range of 90° to 180°.

Step 2: Use the trigonometric identity to find the value of cos x, cos x = 4/5

Step 3: Use the trigonometric identity to find the value of tan x, tan x = 3/4

Step 4: Use the trigonometric identity to find the value of cosec x, cosec x = 5/3

Step 5: Use the trigonometric identity to find the value of sec x, sec x = 5/4

Step 6: Use the trigonometric identity to find the value of cot x, cot x = 4/3

Question:

Value of cosec (−1410°) is A 1​/2 B −1​/2 C √3/2 ​​D 2

Answer:

Answer: B -1/2

Explanation:

To solve this problem, we need to use the definition of cosecant. Cosecant is the reciprocal of the sine of an angle.

Therefore, we can calculate the value of cosecant (−1410°) as follows:

cosec (−1410°) = 1 / sin (−1410°)

Since sin (−1410°) = -1/2,

cosec (−1410°) = -1/2

Hence, the answer is B -1/2.

Question:

Find the value of other five trigonometric ratios: When sinx=3​/5, and x lies in second quadrant.

Answer:

Step 1: Find the value of cosx.

cosx = 4/5

Step 2: Find the value of tanx.

tanx = -3/4

Step 3: Find the value of cosecx.

cosecx = -5/3

Step 4: Find the value of secx.

secx = -4/3

Step 5: Find the value of cotx.

cotx = -4/3

Question:

cosx=−1​/3, x in quadrant III. Find the value of sin x​/2,cos x​/2,tan x​/2

Answer:

  1. sin x/2 = √(1 - cos2x/4) = √(1 - (-1/9)) = √(10/9)

  2. cos x/2 = √(1 - sin2x/4) = √(1 - (-1/9)) = √(10/9)

  3. tan x/2 = sin x/2/cos x/2 = √(10/9)/√(10/9) = 1

Question:

Find the value of other five trigonometric ratios: secx=13​/5, x lies in fourth quadrant.

Answer:

  1. First, find the value of cosx using the equation: cosx = 1/secx cosx = 5/13

  2. Next, find the value of sinx using the equation: sinx = √(1-cos^2x) sinx = √(1-(5/13)^2) sinx = √(1-25/169) sinx = √(144/169) sinx = 12/13

  3. Then, find the value of cosecx using the equation: cosecx = 1/sinx cosecx = 13/12

  4. Next, find the value of cotx using the equation: cotx = cosx/sinx cotx = 5/12

  5. Finally, find the value of tanx using the equation: tanx = sinx/cosx tanx = 12/5

Question:

Find the value of tan19π/3

Answer:

Step 1: Convert 19π/3 into radians.

19π/3 = 19π/3 × (180°/π) = 570°

Step 2: Find the value of tan 570°.

tan 570° = tan(540° + 30°) = tan 540° × tan 30° + tan 540° ÷ tan 30° = 0 × 1/√3 + 0 = 0

Question:

sinx=1​/4, x in quadrant II. Find the value of sinx/2

Answer:

Step 1: Find the value of x in quadrant II that satisfies the equation ‘sinx=1/4’.

Using the inverse sine function, x = arcsin(1/4) = 0.92729522

Step 2: Calculate sinx/2.

sinx/2 = sin(0.92729522)/2 = 0.46364761

Question:

Find the value of other five trigonometric ratios: cosx=−1​/2, x lies in third quadrant.

Answer:

  1. Sinx = √(1 - (cosx)^2) Sinx = √(1 - (-1/2)^2) Sinx = √(1 - 1/4) Sinx = √3/2

  2. Tanx = Sinx/Cosx Tanx = √3/2 / (-1/2) Tanx = -√3

  3. Secx = 1/Cosx Secx = 1/(-1/2) Secx = -2

  4. Cosecx = 1/Sinx Cosecx = 1/√3/2 Cosecx = 2/√3

  5. Cotx = Cosx/Sinx Cotx = (-1/2)/√3/2 Cotx = -2/√3

Question:

Find the value of other five trigonometric ratios: cotx=3​/4, x lies in third quadrant.

Answer:

  1. First, we need to find the measure of angle x. To do this, we can use the inverse cotangent function: x = arccot(3/4)

  2. Next, we can find the value of the other five trigonometric ratios for angle x: sin x = -sqrt(3)/2 cos x = -1/2 tan x = -sqrt(3) sec x = -2 csc x = -2sqrt(3)

Question:

tanx=−5​/12,x lies in second quadrant.

Answer:

  1. First, use the Pythagorean Theorem to determine the length of the adjacent side: adjacent side = 12

  2. Next, use the tangent ratio to calculate the opposite side: opposite side = -5

  3. Then, use the inverse tangent function to calculate the angle: angle = -63.43°

  4. Since the angle lies in the second quadrant, the angle must be between -90° and 0°: x = -63.43°

Question:

Find the value of sin(765o).

Answer:

Step 1: Convert 765° into radians.

1° = π/180 radians

765° = (765 × π) / 180 radians

Step 2: Use the formula sin(x) = x - x3/3! + x5/5! - x7/7! + … to calculate the value of sin(765o).

sin(765o) = (765π/180) - (765π/180)3/3! + (765π/180)5/5! - (765π/180)7/7! + …

ਜੇਈਈ ਅਧਿਐਨ ਸਮੱਗਰੀ (ਗਣਿਤ)

01 ਸੈੱਟ

02 ਸਬੰਧ ਅਤੇ ਕਾਰਜ

03 ਤ੍ਰਿਕੋਣਮਿਤੀਕ ਫੰਕਸ਼ਨ

04 ਗਣਿਤਿਕ ਇੰਡਕਸ਼ਨ ਦਾ ਸਿਧਾਂਤ

05 ਕੰਪਲੈਕਸ ਨੰਬਰ ਅਤੇ ਕੁਆਡ੍ਰੈਟਿਕ ਸਮੀਕਰਨ

06 ਰੇਖਿਕ ਅਸਮਾਨਤਾਵਾਂ

07 ਪਰਮਿਊਟੇਸ਼ਨ ਅਤੇ ਕੰਬੀਨੇਸ਼ਨ

08 ਬਾਇਨੋਮਿਅਲ ਥਿਊਰਮ

09 ਕ੍ਰਮ ਅਤੇ ਲੜੀ

10 ਸਿੱਧੀਆਂ ਲਾਈਨਾਂ ਦੀ ਕਸਰਤ

10 ਸਿੱਧੀਆਂ ਰੇਖਾਵਾਂ ਫੁਟਕਲ

11 ਕੋਨਿਕ ਸੈਕਸ਼ਨ

12 ਤਿੰਨ ਅਯਾਮੀ ਜਿਓਮੈਟਰੀ ਦੀ ਜਾਣ-ਪਛਾਣ

13 ਸੀਮਾਵਾਂ ਅਤੇ ਡੈਰੀਵੇਟਿਵਜ਼

14 ਗਣਿਤਿਕ ਤਰਕ

15 ਅੰਕੜੇ

16 ਸੰਭਾਵਨਾ