05 ନିରନ୍ତରତା ଏବଂ ଭିନ୍ନତା

ବିବିଧ ବ୍ୟାୟାମ

Question:

Differentiate the given function w.r.t. x: sin^3x+cos^6x

Answer:

Step 1: Differentiate sin3x with respect to x.

sin3x = 3sin2xcosx

Step 2: Differentiate cos6x with respect to x.

cos6x = -6sin6x

Step 3: Add the two derivatives.

3sin2xcosx - 6sin6x

Question:

Find dy/dx, if y=12(1−cost),x=10(t−sint),−π/2<t<π/2

Answer:

Step 1: Differentiate y with respect to t:

dy/dt = 12sint

Step 2: Substitute x with 10(t−sint) and differentiate it with respect to t:

dx/dt = 10

Step 3: Divide dy/dt by dx/dt to get dy/dx:

dy/dx = (12sint)/10

Question:

Differentiate the given function w.r.t. x: (3x^2−9x+5)^9

Answer:

Step 1: Take the log of the function.

log[(3x^2−9x+5)^9]

Step 2: Take the derivative of the log of the function with respect to x.

d/dx log[(3x^2−9x+5)^9] = 9/[(3x^2−9x+5)] * (2x−9)

Step 3: Use the chain rule to evaluate the derivative of the original function.

d/dx (3x^2−9x+5)^9 = 9(3x^2−9x+5)^8 * (2x−9)

Question:

Differentiate the given function w.r.t. x: cos(acosx+bsinx), for some constant a and b.

Answer:

Step 1: Use the chain rule to differentiate the function.

Step 2: Differentiate cos(acosx+bsinx) w.r.t. x

Step 3: Take the derivative of the inner function, i.e. acosx+bsinx

Step 4: Use the chain rule again to differentiate acosx+bsinx w.r.t. x

Step 5: Differentiate acosx w.r.t. x

Step 6: Differentiate bsinx w.r.t. x

Step 7: Multiply the derivatives of acosx and bsinx with the derivative of cos(acosx+bsinx).

Step 8: Combine the terms to get the final answer.

Answer: -a sin(acosx + bsinx) - b cos(acosx + bsinx)

Question:

Differentiate the given function w.r.t. x: (5x)^3cos2x

Answer:

Step 1: Rewrite the given function in terms of exponents: 5x^3cos2x

Step 2: Use the power rule to differentiate the function: 15x^2(-2sin2x)

Question:

Differentiate the given function w.r.t. x: x^x+x^a+a^x+a^a , for some fixed a>0 and x>0

Answer:

Step 1: Apply the Chain Rule: d/dx (x^x) + d/dx (x^a) + d/dx (a^x) + d/dx (a^a)

Step 2: Differentiate each term: x^x (ln(x) + 1) + x^a (ln(x)) + a^x (ln(a)) + a^a (ln(a))

Question:

Differentiate the given function w.r.t. x: (logx)^logx, x>1 A (logx)^logx[1/x−log(logx)/x] B (logx)^logx[1/x+log(logx)/x]
C −(logx)^logx[1/x−log(logx)/x]
D −(logx)^logx[1/x+log(2logx)/x]

Answer:

Answer: C

Step-by-step solution:

Step 1: Use the chain rule to differentiate the given function.

Step 2: The function (logx)^logx is a combination of two functions: logx and log(logx).

Step 3: Applying the chain rule, the derivative of (logx)^logx is: (logx)^logx[1/x−log(logx)/x]

Step 4: Since the given function is a negative, the derivative is: −(logx)^logx[1/x−log(logx)/x]

Answer: C

Question:

Differentiate the given function w.r.t. x: cot^−1[√1+sinx+√1−sinx/√1+sinx+√1−sinx], 0 < x <π/2

Answer:

  1. Using chain rule, d/dx [cot^−1[√1+sinx+√1−sinx/√1+sinx+√1−sinx]] = d/d[√1+sinx+√1−sinx/√1+sinx+√1−sinx] [cot^−1[√1+sinx+√1−sinx/√1+sinx+√1−sinx]]

  2. Using Quotient Rule, d/d[√1+sinx+√1−sinx/√1+sinx+√1−sinx] [cot^−1[√1+sinx+√1−sinx/√1+sinx+√1−sinx]] = (d/dx[√1+sinx+√1−sinx] * (√1+sinx+√1−sinx) - (√1+sinx+√1−sinx) * d/dx[√1+sinx+√1−sinx])/(√1+sinx+√1−sinx)^2

  3. Simplifying, = (1/2 * (√1+sinx+√1−sinx) * (cosx) - (√1+sinx+√1−sinx) * 1/2 * (√1+sinx+√1−sinx) * (-sinx))/(√1+sinx+√1−sinx)^2

  4. Simplifying further, = (cosx - sinx)/(2 * (√1+sinx+√1−sinx)^2)

Question:

Differentiate the given function w.r.t. x:sin^−1(x√x),0≤x≤1

Answer:

Step 1: Differentiate sin^−1(x√x) w.r.t. x

Step 2: Use the chain rule:

d/dx[sin^−1(x√x)] = d/du[sin^−1(u)] * du/dx

Step 3: Differentiate sin^−1(u) w.r.t. u

d/du[sin^−1(u)] = 1/√(1-u^2)

Step 4: Differentiate x√x w.r.t. x

du/dx = √x + x/2√x

Step 5: Substitute the values of d/du[sin^−1(u)] and du/dx in the chain rule equation

d/dx[sin^−1(x√x)] = (1/√(1-x√x^2)) * (√x + x/2√x)

Step 6: Simplify the equation

d/dx[sin^−1(x√x)] = (1/√(1-x√x^2)) * (√x + x/2√x)

d/dx[sin^−1(x√x)] = (1/√(1-x^2)) * (√x + x/2√x)

d/dx[sin^−1(x√x)] = (√x + x/2√x) / √(1-x^2)

Question:

Differentiate the given function w.r.t. x: cos^−1 x/2/√2x+7, −2<x<2

Answer:

Step 1: Rewrite the given function in terms of cos inverse: cos^−1 (x/2/√2x+7)

Step 2: Apply the chain rule to differentiate the function: d/dx[cos^−1 (x/2/√2x+7)] = -1/√[1-(x/2/√2x+7)^2] * (1/2/√2x+7) * (2/√2-2x/2(2x+7)^2)

Step 3: Simplify the expression: d/dx[cos^−1 (x/2/√2x+7)] = -1/(2√2x+7) * (1/√2x+7 - x/2(2x+7)^2)

Question:

Find dy/dx, if y=sin^−1x+sin^−1√1−x^2,−1≤t≤1

Answer:

  1. Rewrite y in terms of inverse trigonometric functions: y = sin^−1x + sin^−1√1−x^2

  2. Take the derivative of y with respect to x: dy/dx = (1/√1−x^2)·(−x) + (1/√1−x^2)·(−2x)

  3. Simplify the expression: dy/dx = (−3x)/√1−x^2

Question:

Differentiate the given function w.r.t. x: (sinx−cosx)^(sinx−cosx), π/4<x<3π/4

Answer:

Step 1: Differentiate the given function w.r.t. x: (sinx−cosx)^(sinx−cosx)

Step 2: Use the chain rule to differentiate the function: d/dx[(sinx−cosx)^(sinx−cosx)] = (sinx−cosx)^(sinx−cosx) * d/dx[sinx−cosx]

Step 3: Differentiate the inside function: d/dx[sinx−cosx] = cosx + sinx

Step 4: Substitute the derivative of the inside function into the chain rule: d/dx[(sinx−cosx)^(sinx−cosx)] = (sinx−cosx)^(sinx−cosx) * (cosx + sinx)

Step 5: Substitute the given range of x values into the function: d/dx[(sinx−cosx)^(sinx−cosx)] = (sin(π/4)−cos(π/4))^(sin(π/4)−cos(π/4)) * (cos(π/4) + sin(π/4)) - (sin(3π/4)−cos(3π/4))^(sin(3π/4)−cos(3π/4)) * (cos(3π/4) + sin(3π/4))

Question:

Differentiate the given function w.r.t. x: x^x^2−3+(x−3)^x^2, for x>3

Answer:

Given, f(x) = x^x^2−3+(x−3)^x^2

Differentiate w.r.t. x,

f’(x) = (x^x^2−3)’ + (x−3)^x^2'

Now,

(x^x^2−3)’ = (x^x^2)‘−3’

= (x^x^2) (ln x) (x^2) − 0

= x^x^2 ln x x^2

Similarly,

(x−3)^x^2)’ = (x−3)^x^2 (ln (x−3)) (x^2)

Now,

f’(x) = x^x^2 ln x x^2 + (x−3)^x^2 (ln (x−3)) (x^2)

= x^x^2 [ln x + (x−3) ln (x−3)] x^2

Therefore, the differentiated form of the given function is,

f’(x) = x^x^2 [ln x + (x−3) ln (x−3)] x^2, for x>3

Question:

If x and y are connected parametrically by the given equation, then without eliminating the parameter, find dy/dx. x=a(cosθ+θsinθ) and y=a(sinθ−θcosθ)

Answer:

  1. Differentiate the equation x with respect to θ:

dx/dθ = a(−sinθ + cosθ + θcosθ + sinθ)

  1. Differentiate the equation y with respect to θ:

dy/dθ = a(cosθ − θsinθ − sinθ − cosθ)

  1. Substitute the values of dx/dθ and dy/dθ in the equation:

dy/dx = (dy/dθ)/(dx/dθ)

  1. Simplify the equation:

dy/dx = (a(cosθ − θsinθ − sinθ − cosθ))/(a(−sinθ + cosθ + θcosθ + sinθ))

  1. Finally, the answer is:

dy/dx = −1

JEE ଅଧ୍ୟୟନ ସାମଗ୍ରୀ (ଗଣିତ)

01 ସମ୍ପର୍କ ଏବଂ କାର୍ଯ୍ୟ

02 ଓଲଟା ଟ୍ରାଇଗୋନେଟ୍ରିକ୍ କାର୍ଯ୍ୟଗୁଡ଼ିକ

03 ମ୍ୟାଟ୍ରିକ୍ସ

04 ନିର୍ଣ୍ଣୟକାରୀ

05 ନିରନ୍ତରତା ଏବଂ ଭିନ୍ନତା

06 ଡେରିଭେଟିକ୍ସର ପ୍ରୟୋଗ

07 ଇଣ୍ଟିଗ୍ରାଲ୍

08 ଇଣ୍ଟିଗ୍ରାଲ୍ସର ପ୍ରୟୋଗ

09 ଭେକ୍ଟର୍

10 ତିନୋଟି ଡାଇମେନ୍ସନାଲ୍ ଜ୍ୟାମିତି

11 ରେଖା ପ୍ରୋଗ୍ରାମିଂ

12 ସମ୍ଭାବନା