02 ଓଲଟା ଟ୍ରାଇଗୋନେଟ୍ରିକ୍ କାର୍ଯ୍ୟଗୁଡ଼ିକ

ବିଭିନ୍ନ ସମାଧାନ ବ୍ୟାୟାମ କରନ୍ତୁ

Question:

Prove: cos-1 12​/13+sin-1 3​/5=sin-1 56/65

Answer:

  1. cos-1 12/13 + sin-1 3/5 = (180/π) * cos-1 (12/13) + (180/π) * sin-1 (3/5) = (180/π) * (π/3) + (180/π) * (1/5) = 60 + 36 = 96

  2. sin-1 56/65 = (180/π) * sin-1 (56/65) = (180/π) * (2/5) = 72

  3. Therefore, cos-1 12/13 + sin-1 3/5 = sin-1 56/65

Question:

Solve: tan-1(x​/y)−tan-1 x−y​/x+y is equal to A π​/2 B π​/3 C π​/4 D −3π/4

Answer:

Step 1: Use the inverse tangent addition formula to simplify the expression: tan-1(x​/y)−tan-1 x−y​/x+y = tan-1 ( (x+y)/(x-y) )

Step 2: Use the inverse tangent value to solve for the answer: tan-1 ( (x+y)/(x-y) ) = π/4

Answer: C. π/4

Question:

Prove: sin-1 8​/17+sin-1 3​/5=tan-1 77/36

Answer:

  1. sin-1 8​/17+sin-1 3​/5 = sin-1 (8/17 + 3/5) (Using the addition property of inverse trigonometric functions)

  2. sin-1 (8/17 + 3/5) = sin-1 (77/85) (Simplifying 8/17 + 3/5)

  3. sin-1 (77/85) = tan-1 (77/36) (Using the identity sin-1 x = tan-1 (x/√(1-x2)))

  4. Therefore, sin-1 8​/17+sin-1 3​/5=tan-1 77/36 (Proved)

Question:

Solve : sin-1(1−x)−2sin-1x=π​/2, then x is equal to A 0,1​/2 B 1,1​/2 C 0 D 1/2

Answer:

Step 1: sin-1(1−x)−2sin-1x=π​/2

Step 2: sin-1(1−x) = π/2 + 2sin-1x

Step 3: 1 - x = sin(π/2 + 2sin-1x)

Step 4: x = 1 - sin(π/2 + 2sin-1x)

Step 5: x = 1/2

Answer: D 1/2

Question:

Solve: 2tan-1(cosx)=tan-1(2cosecx)

Answer:

Step 1: Convert tan-1(2cosecx) to sinx

tan-1(2cosecx) = sinx

Step 2: Rearrange the equation to make sinx the subject

2tan-1(cosx) = sinx

2cosx = sinx

Step 3: Divide both sides of the equation by 2

cosx = sinx/2

Step 4: Take the inverse sine of both sides

x = sin-1(sinx/2)

Question:

Find the value of cos-1 (cos13π​/6).

Answer:

Answer: Step 1: cos13π/6 = cos(2π/3) Step 2: cos-1 (cos(2π/3)) = 2π/3

Therefore, the value of cos-1 (cos13π/6) = 2π/3.

Question:

Find the value of tan-1(tan7π​/6)

Answer:

  1. First, recall that tan-1(x) is the inverse of the tangent function, meaning that tan-1(tanx) = x

  2. Therefore, tan-1(tan7π/6) = 7π/6

Question:

Prove: 2sin-1 3​/5=tan-1 24/7

Answer:

  1. Use the identity sin-1 x = tan-1 (x/√(1−x2))

  2. 2sin-1 3/5 = 2tan-1 (3/5/√(1−(3/5)2))

  3. 2tan-1 (3/5/√(1−(3/5)2)) = 2tan-1 (24/7/√(1−(24/7)2))

  4. Simplify the fractions on the right side of each equation:

2tan-1 (3/5/√(1−(3/5)2)) = 2tan-1 (6/7/√(1−(6/7)2))

  1. Use the identity tan-1 x = tan-1 (x/√(1+x2))

  2. 2tan-1 (6/7/√(1−(6/7)^2)) = 2tan-1 (24/7/√(1+ (24/7)2))

  3. Simplify the fractions on the right side of each equation:

2tan-1 (6/7/√(1−(6/7)^2)) = 2tan-1 (12/7/√(1+ (12/7)2))

  1. Since both sides of the equation are equal, it can be concluded that 2sin-1 3/5 = tan-1 24/7

Question:

Prove: tan-1 √x =1​/2cos-1(1−x​/1+x),x∈[0,1]

Answer:

Given: tan-1 √x =1​/2cos-1(1−x​/1+x),x∈[0,1]

Step 1: Let y = tan-1 √x

Step 2: We know that tan(y) = √x

Step 3: Substitute √x for tan(y)

Step 4: We get y = cos-1(1−x​/1+x)

Step 5: Multiply both sides by 1/2

Step 6: We get y = 1/2cos-1(1−x​/1+x)

Step 7: Since y = tan-1 √x, we get tan-1 √x = 1/2cos-1(1−x​/1+x)

Step 8: Since x ∈ [0,1], the statement is true.

Question:

Prove: cot-1((√1+sinx+√1−sinx)/(√1+sinx−√1−sinx))=x​/2,x∈(0,π​/4)

Answer:

  1. First, we will use the identity cot-1(x)=tan-1(1/x)

  2. We can rewrite the left side of the equation as: cot-1((√1+sinx+√1−sinx)/(√1+sinx−√1−sinx))=tan-1(1/((√1+sinx+√1−sinx)/(√1+sinx−√1−sinx)))

  3. We can simplify the equation by multiplying the numerator and denominator by √1−sinx: tan-1(1/((√1+sinx+√1−sinx)/(√1+sinx−√1−sinx)))=tan-1(((√1−sinx)/(√1+sinx))/((√1+sinx)/(√1−sinx)))

  4. We can simplify the equation even further by multiplying the numerator and denominator by sinx: tan-1(((√1−sinx)/(√1+sinx))/((√1+sinx)/(√1−sinx)))=tan-1((sinx/(√1+sinx))/(1/√1−sinx))

  5. We can simplify the equation even further by multiplying the numerator and denominator by √1+sinx: tan-1((sinx/(√1+sinx))/(1/√1−sinx))=tan-1((sinx√1+sinx)/(√1+sinx/√1−sinx))

  6. We can now use the identity sin2 x + cos2 x = 1 to simplify the equation: tan-1((sinx√1+sinx)/(√1+sinx/√1−sinx))=tan-1((sinx√1+sinx)/(cosx))

  7. We can now use the identity sin x = 2 sin (x/2) cos (x/2) to simplify the equation even further: tan-1((sinx√1+sinx)/(cosx))=tan-1(2sin(x/2)cos(x/2))

  8. Finally, we can use the identity tan (2x) = 2 tan x/(1-tan2 x) to simplify the equation: tan-1(2sin(x/2)cos(x/2))=tan-1(2tan(x/2)/(1-tan2(x/2)))

  9. Therefore, we can conclude that cot-1((√1+sinx+√1−sinx)/(√1+sinx−√1−sinx))=x/2,x∈(0,π/4).

Question:

Prove: tan-1((√1+x−√1−x)/(√1+x+√1−x)=π​/4−1​/2cos-1x,−1​/√2≤x≤1 [Hint: putx=cos2θ]

Answer:

  1. Let x = cos2θ

  2. Substitute x = cos2θ into the given equation:

tan-1((√1+cos2θ−√1−cos2θ)/(√1+cos2θ+√1−cos2θ)=π/4−1​/2cos-1cos2θ,−1​/√2≤cos2θ≤1

  1. Simplify:

tan-1((2sinθ)/(2cosθ))=π/4−1​/2cos-1cos2θ,−1​/√2≤cos2θ≤1

  1. Use the identity tan-1(a/b) = tan-1(a) − tan-1(b):

tan-1(sinθ)−tan-1(cosθ)=π/4−1​/2cos-1cos2θ,−1​/√2≤cos2θ≤1

  1. Use the identity tan-1(a) = a for a small angle:

sinθ−cosθ=π/4−1​/2cos-1cos2θ,−1​/√2≤cos2θ≤1

  1. Simplify:

sinθ=π/4−1​/2cos-1cos2θ+cosθ,−1​/√2≤cos2θ≤1

  1. Use the identity sinθ = 2sin(θ/2)cos(θ/2):

2sin(θ/2)cos(θ/2)=π/4−1​/2cos-1cos2θ+cosθ,−1​/√2≤cos2θ≤1

  1. Simplify:

sin(θ/2)=π/4−1​/2cos-1cos2θ+cos(θ/2),−1​/√2≤cos2θ≤1

  1. Use the identity cos(θ/2) = √(1+cosθ)/2:

sin(θ/2)=π/4−1​/2cos-1cos2θ+√(1+cosθ)/2,−1​/√2≤cos2θ≤1

  1. Simplify:

sin(θ/2)=π/4−1​/2cos-1cos2θ+√(1+cos2θ)/2,−1​/√2≤cos2θ≤1

  1. Prove:

tan-1((√1+x−√1−x)/(√1+x+√1−x)=π​/4−1​/2cos-1x,−1​/√2≤x≤1

Question:

The value of : tan-1 1​/5+tan-1 1​/7+tan-1 1​/3+tan-1 1​/8−π/4

Answer:

Step 1: tan-1 1/5 + tan-1 1/7 + tan-1 1/3 + tan-1 1/8 =

tan-1 ((1/5) + (1/7) + (1/3) + (1/8))

Step 2: tan^−1 ((1/5) + (1/7) + (1/3) + (1/8)) - π/4 =

tan-1 ((1/5) + (1/7) + (1/3) + (1/8)) - (π/4)

Question:

Solve: sin(tan^−1x),∣x∣<1 is equal to A x​/√1−x2 ​B 1​/√1−x2 C 1​/√1+x2 D x/√1+x2

Answer:

Answer: A x​/√1−x2

Question:

Prove: 9π​/8−9​/4sin-1 1​/3=9​/4sin-1 2√2/3

Answer:

  1. Start by expanding the left side of the equation: 9π/8 - 9/4sin-1(1/3)

  2. Use the identity sin^-1(1/3) = π/6: 9π/8 - 9/4(π/6)

  3. Simplify: 9π/8 - 3π/8

  4. Use the identity sin^-1(2√2/3) = π/3: 9π/8 - 3π/8 = 9/4(π/3)

  5. Simplify: 9/4(π/3) = 9/4sin-1(2√2/3)

  6. Therefore, the equation is true: 9π/8 - 9/4sin-1(1/3) = 9/4sin^-1(2√2/3)

Question:

Solve: tan-1(1−x)​/(1+x)=1​/2tan-1x,(x>0)

Answer:

  1. tan-1(1−x)​/(1+x) = 1​/2tan-1x
  2. (1−x)​/(1+x) = 1​/2x
  3. (1−x) = 1​/2x(1+x)
  4. 1−x = 1​/2x^2 + 1​/2x
  5. 1−x = 1​/2x(x+1)
  6. 1 = 1​/2x^2 + 1​/2x + x
  7. 2 = x2 + x + 2
  8. 0 = x2 + x - 1
  9. 0 = (x+1)(x-1)
  10. x = 1 or x = -1

Question:

Prove that : sin-1 5​/13+cos-1−3​/5=tan−1 63/16

Answer:

Given: sin-1 5​/13+cos-1−3​/5=tan−1 63/16

Step 1: Rewrite the given equation as: sin-1 (5/13) + cos-1 (3/5) = tan-1 (63/16)

Step 2: Use the trigonometric identity sin-1 (a) + cos-1 (b) = tan-1 (a/b)

Step 3: Substitute 5/13 for a and 3/5 for b in the identity,

sin-1 (5/13) + cos-1 (3/5) = tan-1 (5/13 / 3/5)

Step 4: Simplify the fraction 5/13 / 3/5 to get 63/16,

sin-1 (5/13) + cos-1 (3/5) = tan-1 (63/16)

Step 5: Since the left and right sides of the equation are equal, the statement is proved.

Question:

Prove: cos-1 4​/5+cos-1 12​/13=cos-1 33/65

Answer:

  1. cos-1 4​/5+cos-1 12​/13
  2. cos-1 (4/5 + 12/13) (Using the inverse cosine addition formula)
  3. cos-1 (16/65 + 156/65) (Simplifying 4/5 + 12/13)
  4. cos-1 (172/65) (Adding 16/65 and 156/65)
  5. cos-1 33/65 (Simplifying 172/65)

Therefore, cos-1 4​/5+cos-1 12​/13=cos-1 33/65

JEE ଅଧ୍ୟୟନ ସାମଗ୍ରୀ (ଗଣିତ)

01 ସମ୍ପର୍କ ଏବଂ କାର୍ଯ୍ୟ

02 ଓଲଟା ଟ୍ରାଇଗୋନେଟ୍ରିକ୍ କାର୍ଯ୍ୟଗୁଡ଼ିକ

03 ମ୍ୟାଟ୍ରିକ୍ସ

04 ନିର୍ଣ୍ଣୟକାରୀ

05 ନିରନ୍ତରତା ଏବଂ ଭିନ୍ନତା

06 ଡେରିଭେଟିକ୍ସର ପ୍ରୟୋଗ

07 ଇଣ୍ଟିଗ୍ରାଲ୍

08 ଇଣ୍ଟିଗ୍ରାଲ୍ସର ପ୍ରୟୋଗ

09 ଭେକ୍ଟର୍

10 ତିନୋଟି ଡାଇମେନ୍ସନାଲ୍ ଜ୍ୟାମିତି

11 ରେଖା ପ୍ରୋଗ୍ରାମିଂ

12 ସମ୍ଭାବନା