Rna Splicing
RNA splicing is a biological process where a newly synthesized pre-mRNA transcript is processed and transformed into mRNA. It involves the removal of non-coding regions of RNA (introns) and the joining of the coding regions (exons).
RNA Splicing is a process by which introns (non-coding regions) of a pre-mRNA molecule are removed and the remaining exons (coding regions) are joined together to form a mature mRNA molecule.
RNA splicing is the process by which the newly synthesized pre-mRNA, also known as hnRNA (heterogeneous nuclear RNA), is processed and converted to the mature mRNA. This post-transcriptional modification takes place in the nucleus and the mRNA then travels to the cytoplasm for translation or protein synthesis.
In prokaryotes such as bacteria, the newly transcribed RNA is ready for translation and both the processes can even occur simultaneously in the mRNA. Most of the eukaryotic genes are transcribed in the form of pre-mRNA and have to be processed before undergoing protein synthesis.
In the RNA splicing process, the non-coding intervening regions (i.e. introns) are removed and the coding regions (i.e. exons) are joined together. The process is catalysed by a spliceosome, and ribozymes (catalytic RNA) catalyse their own splicing.
Additionally, capping with a modified Guanine nucleotide at the 5’ end and tailing with Poly-A (Adenylate) residues at the 3’ end is also done to protect the coding segments and to provide stability to the mature mRNA.
RNA Splicing Process
In this process, introns are spliced out. RNA splicing is catalysed by spliceosomes, which is a protein-RNA complex, i.e. a complex of small nuclear ribonucleoproteins (snRNPs or snurps). It recognises and removes introns. Exons, which are the coding parts, are joined together.
Introns are removed at the specific sequences present at the 5’ and 3’ ends of the introns, known as splice sites.
Alternative Splicing
Alternative splicing is a process that increases the diversity of proteins by allowing RNAs to be spliced differently, resulting in different mRNA molecules that code for different proteins. This process is a normal splicing process in most eukaryotes.
Self-Splicing
Some genes, such as phage genes and protozoan ribosomal RNA genes, are capable of self-splicing, during which introns can catalyse their own excision from the parent RNA. Additionally, some mitochondrial genes are also capable of self-splicing.
The Significance of RNA Splicing
RNA splicing allows for the creation of multiple functional mRNAs from one transcript, which codes for various proteins.
It also helps in regulating gene expression and the protein content of the cell.
It helps in the evolution process by combining exons in different ways and creating new and better proteins.
New exons can be inserted into the introns to create new proteins without disrupting the functionality of the original gene.
Frequently Asked Questions
What are Spliceosomes?
Spliceosomes are molecular machines found in eukaryotic cells that are responsible for removing introns from pre-mRNA during the process of gene expression.
A spliceosome is typically composed of 5 snRNA molecules and a variety of associated proteins. This large RNP (ribonucleoprotein) complex is found in the eukaryotic nucleus and is also referred to as snRNPs or snurps.
The Phases Involved in Protein Synthesis Are:
- Transcription
- Translation
- Post-translational Modification
Protein synthesis is a biological process that involves the production of new proteins. This process consists of two phases: transcription and translation. In transcription, a portion of DNA coding for a protein is converted into an mRNA molecule. During translation, the mRNA molecule is decoded in a ribosome to produce the polypeptide chains.
Yes, proteins can undergo splicing.
Proteins, similar to RNA, can undergo splicing. During this process, the inteins are removed and the remaining exteins are joined together. This splicing has been observed in a variety of organisms, including archaea, bacteria, yeast, plants, and humans.
NEET NCERT Solutions (Biology)
- Animal Kingdom
- 16S Rrna
- Abscission
- Acromion Process Notes
- Alcoholic Fermentation
- Assisted Reproductive Technology
- Attempting Neet Biology In 45 Minutes
- Auxin
- Bioremediation Mcqs
- Bones Of Spine
- Carbon Fixation
- Chondrocytes
- Choroid
- Chromosomal Disorder In Humans
- Chromosome Number Of List Of Organisms
- Compound Leaf Notes
- Connective Tissue
- Constitutive Transcription
- Cyathium Inflorescence
- Cycas Notes
- Diadelphous Stamen Notes
- Different Stem Modifications With Examples
- Digestive System Of Balanoglossus
- Digestive System Of Frog
- Diplontic Life Cycle
- Dna Polymerases
- Double Helix Structure Of Dna
- Down Syndrome Chromosome Number
- Dryopteris
- Earthworm Digestive System
- Economic Importance Of Algae
- Emp Pathway
- Epithelial Tissue
- Equisetum
- Factors Affecting Water Potential
- Floral Formula
- Floral Formula Of Fabaceae
- Floral Formula Of Hibiscus
- Floral Formula Of Liliaceae
- Floral Formula Of Solanaceae
- Function Of Pons
- Functions Of Human Skeletal System
- Gamete Intrafallopian Transfer
- Gene Expression
- Green Algae
- Hatch And Slack Cycle
- Heterosporous Pteridophytes
- Heterozygous
- Histone
- Histone Octamer
- How Do Plants Reduce Water Loss
- Human Eye Lens
- Hypanthodium
- Iaa Hormone
- Important Notes For Neet Biology Strategies For Enhancement In Food Production
- Important Notes For Neet Living World
- Important Notes For Neet Locomotion And Movement
- Important Notes For Neet Molecular Basis Of Inheritance
- Important Notes For Neet Morphology Of Flowering Plants
- Important Notes For Neet Plant Growth And Development
- Important Notes For Neet Plant Kingdom
- Important Notes For Neet Plant Taxonomy
- Important Notes For Neet Principles Of Inheritance And Variation
- Important Notes For Neet Reproductive Health
- Krebs Cycle
- Lactational Amenorrhea
- Lag Phase
- Last Minute Guide For Neet Biology
- Leaf Venation Notes
- Leguminosae
- Lethal Genes
- Locomotory Disorders
- Log Phase
- Long Day Plants
- Maize Chromosome Number
- Marchantia
- Mcq On Animal Tissues
- Mcq On Biomass Energy
- Mcq On Cardiovascular System
- Mcq On Excretory System
- Mcq On Global Warming
- Mcq On Krebs Cycle
- Mcq On Mitochondria
- Mcq On Ozone Layer Depletion
- Mcq On Prokaryotes
- Mcq On Regualtion Of Gene Expression In Eukaryotes
- Mcqs On Amino Acids
- Mcqs On Biopesticides
- Mcqs On Blood
- Mcqs On Diseases Caused By Protozoa
- Mcqs On Epithelial Tissue
- Mcqs On Mendel Laws Of Inheritance
- Mcqs On Protein Synthesis
- Mechanism Of Vision
- Medulla Oblongata
- Midbrain Function Notes
- Mirna Notes
- Mrna Notes
- Multiple Alleles Notes
- Neet Biology Flashcards
- Neet Biology Mcq Cell Structure And Function
- Neet Biology Mcq On Dna Structure
- Neet Biology Mcq On Lipids
- Neet Biology Syllabus
- Neet Questions Animal Kingdom
- Neet Questions Biological Classification
- Neet Questions Biotechnology And Its Application
- Neet Questions Biotechnology Principles And Processes
- Neet Questions Body Fluids And Circulation
- Neet Questions Breathing And Exchange Of Gases
- Neet Questions Cell Cycle And Cell Division
- Neet Questions Cell The Unit Of Life
- Neet Questions Digestion And Absorption
- Neet Questions Evolution
- Neet Questions Human Health And Diseases
- Neet Questions Human Reproduction
- Neet Questions Locomotion And Movement
- Neet Questions Molecular Basis Of Inheritance
- Neet Questions Morphology Of Flowering Plants
- Neet Questions Neural Control And Coordination
- Neet Questions Organisms And Populations
- Neet Questions Principles Of Inheritance And Variation
- Neet Questions Reproduction In Organisms
- Neet Questions Respiration In Plants
- Neet Questions Sexual Reproduction In Flowering Plants
- Neet Questions The Living World
- Neet Questions Transport In Plants
- Neuron Physiology
- Non Vascular Plants
- Nondisjunction
- Nucleotide
- Number Of Chromosomes In Humans
- Palmately Compound Leaf Notes
- Pectoral Girdle
- Pelvic Girdle
- Pem Mcqs
- Pep Carboxylase
- Phyllotaxy Notes
- Pinnately Compound Leaf Notes
- Plant Hormones
- Plasma Membrane Mcqs
- Polygenic Inheritance
- Process Of Neural Communication
- Pteris
- Pyruvate
- Racemose Inflorescence
- Ray Florets Notes
- Respiratory Substrates
- Rice Chromosome Number
- Rna Splicing
- Rubisco
- Salvinia
- Selaginella
- Senescence And Abscission
- Sensory Receptors
- Short Notes For Neet Aneuploidy
- Short Notes For Neet Cam Plants
- Short Notes For Neet Disorders Of Bones
- Short Notes For Neet Disorders Of Joints
- Short Notes For Neet Disorders Of Muscular System
- Short Notes For Neet Glycolate Pathway
- Short Notes For Neet Hindbrain
- Short Notes For Neet Synapse
- Short Notes For Neet Trna Structure
- Significance Of Glycolysis
- Simple Diffusion
- Sirna Notes
- Somatic Embryogenesis
- Spirogyra
- Spliceosomes Notes
- Squamous Epithelial Cells
- Stress Hormones
- Structure Of Ear
- Synopsis On Tissues
- Taxonomic Keys
- Thalamus Function
- Types Of Cymose Inflorescence
- Types Of Muscular Dystrophy
- Vernalization
- Visceral Nervous System Notes
- Volvox
- What Are Floating Ribs
- What Are The Three Primary Layers Of Retina
- What Are Vascular Plants
- What Causes Down Syndrome
- What Is Acromion
- What Is Collagen
- What Is Epistasis
- What Is Stroma
- What Is Thalassemia And What Are Its Types
- What Is The Blind Spot In Eye
- What Is The Function Of Cochlea
- What Is The Function Of Cornea
- What Is The Function Of Eustachian Tube
- What Is The Function Of Iris
- What Is The Function Of Pupil
- What Is The Function Of Stroma Lamellae
- What Is The Function Of Thylakoid
- What Is The Sclera Of Eye
- What Is Turner Syndrome
- What Is Vegetative Propagation And When Is It Used
- When Does Dna Copying Occur
- Where Does The Oxygen Liberated During Photosynthesis Come From
- Where Is Optic Nerve Located
- Where Is Scapula Bone Located
- Where Is The Glenoid Cavity Located
- Which Organism Is Known As Drosophila Of Plant Kingdom
- Why Solve Mcqs For Neet Biology