04 सारणिक

विविध अभ्यास

Question:

Without expanding the determinant, prove that |aa2bcbb2cacc2ab| =|1a2a31b2b31c2c3|

Answer:

Solution:

We can use the Laplace Expansion Theorem to prove this statement. According to the theorem, the determinant of a matrix is equal to the sum of the products of the elements of any row or column and its corresponding cofactor.

Therefore, we can expand the determinant using the first column of the given matrix and its corresponding cofactor.

|aa2bcbb2cacc2ab|

= a|1a2bcbb2cacc2ab|

  • b|aa21bb2cacc2ab|
  • c|aa2bcbb21cc2ab|

= a|1a2a3bb2b3<mn

Question:

Let A=|1-21-231115|Verify that (i) [adj A] −1 =adj (A) −1 (ii)(A-1)-1=A

Answer:

Step 1: Calculate the adjugate of A

adj A = |32-12-1-1-1-11|

Step 2: Calculate the inverse of A

A-1 = |32-12-1-1-1-11|

Step 3: Verify that (i) adj A-1 = adj (A-1)

adj A-1 = |32-12-1-1-1-11|

adj (A-1) = |32-12-1-1-1-11|

Since adj A-1 = adj (A-1), the first part of the statement is true.

Step 4: Verify that (ii) (A-1)-1 = A

(A-1)-1 = |1-21-231<mtr

Question:

Using properties of determinants, prove that: |αα2β+γββ2γ+αγγ2α+β| =(α−β)(β−γ)(γ−α)(α+β+γ)

Answer:

  1. Expand the determinant using the Laplace Expansion along the last column:

|αα2β+γββ2γ+αγγ2α+β|=(α+β+γ)|αα2βββ2γγγ2α|

  1. Apply the rule of Sarrus:

|αα2βββ2γγγ2α|=αα2+ββ2+γγ2+2αβγ-αβ2-βγ2-γα2

  1. Apply the distributive property:

(α+β+γ)(α2+β2+</

Question:

Evaluate |xyx+yyx+yx x+yxy|

Answer:

Answer: |x y x+y| |y x+y x| |x+y x y|

= |x+y| + |x| + |y| = (x+y) + (x) + (y) = x + x + y + y + x + y = 3x + 3y

Question:

Evaluate |cosαcosβcosαsinβ−sinα−sinβcosβ0 sinαcosβsinαsinβcosα|

Answer:

  1. Calculate the determinant of the given matrix by using the formula:

|cosαcosβcosαsinβ−sinα−sinβcosβ0 sinαcosβsinαsinβcosα|

= cosαcosβcosβ + sinαsinβcosβ - cosαsinβsinβ

= cosαcos²β + sinαsin²β

  1. Simplify the expression:

cosαcos²β + sinαsin²β

= cosα(1 - sin²β) + sinαsin²β

= cosα - cosαsin²β + sinαsin²β

= cosα + sinαsin²β

Question:

If A -1 =[3-11−156-5 5-22] and B=[12-2−130 0-21], find (AB) -1

Answer:

Solution:

Step 1: Find A-1

A-1 =

[3-11−156-5 5-22]

Step 2: Find B

B =

[12-2−130 0-21]

Step 3: Find AB

AB =

[-1-4-114-3-5 522]

Step 4: Find (AB)-1

(AB)-1 =

[-21-1-423 1-12]

Question:

Evaluate [1xy1x+yy 1xx+y]

Answer:

Step 1: The given expression is a 3x3 matrix.

Step 2: The elements of the matrix are 1, x, y, x+y, y, and x+y.

Step 3: To evaluate the given expression, we need to calculate the determinant of the matrix.

Step 4: The determinant of the matrix is calculated by using the Laplace expansion.

Step 5: The determinant of the matrix is calculated as follows:

|1xy1x+yy1xx+y|=11×x×y1×x+y×y1×x×x+y=x×yx+y×y

Step 6: Hence, the final answer is x×yx+y×y.

Question:

Prove that the determinant [xsinθcosθ-sinθ-x1 cosθ1x] is independent of θ.

Answer:

  1. Expand the determinant using the Laplace expansion along the first row: [xsinθcosθ-sinθ-x1 cosθ1x] = x[cosθ1x-sinθ-x1 cosθ1x] - sin[xsinθcosθ-sinθ-x1 1xcosθ]

  2. Simplify the two determinants: x[cosθ1x-sinθ-x1 cosθ1x] = x[1xcosθ-x-1-sinθ cosθ1x] = x[1xcos

    Question:

    Solve the equation [x+axxxx+ax xxx+a]=0,a=0

    Answer:

    1. Multiply the first row of the matrix by -1: [-x-a-x-xxx+ax xxx+a]

    2. Add the first row to the second and third row: [-x-a-x-x000 000]

    3. Since all the elements of the matrix are equal to 0, the equation is satisfied.

    Question:

    If a,b and c are real numbers and Δ=|b+cc+aa+bc+aa+bb+c a+bb+cc+a|=0, show that either a+b+c=0 or a=b=c.

    Answer:

    1. Expand the determinant Δ:

    |b+cc+aa+bc+aa+bb+c a+bb+cc+a|=0

    =-2(a2+b2+c2+ab+bc+ca)

    1. Factor the expression:

    -2(a2+b2+c2+ab+bc+ca)=0

    =-2((a+b+c)(a2-ab+b2-bc+c2-ca))

    1. Set each factor equal to 0:

    a+b+c=0

    a2-ab+b2-bc+c2-ca=0

    1. Solve the equations

    Question:

    Prove that |a2bcac+c2a2+abb2acabb2+bcc2| =4a2b2c2

    Answer:

    1. First, expand the terms inside the matrix: |a22bcac2+c2a22abb22ac2abb22bcc2|

    2. Next, factor out the common terms from each row and column: |a22bcac2+c2a22abb22ac2abb22bcc2|

    3. Finally, combine like terms and simplify: |a22bcac2+c2a22abb22ac2abb22bcc2|

    = |4a2b2c2|

    जेईई अध्ययन सामग्री (गणित)

    01 संबंध एवं फलन

    02 व्युत्क्रम त्रिकोणमितीय फलन

    03 आव्यूह

    04 सारणिक

    05 सांत्यता और अवकलनीयता

    06 अवकलज का अनुप्रयोग

    07 समाकलन

    08 समाकलन का अनुप्रयोग

    09 वैक्टर

    10 त्रिविमीय ज्यामिति का परिचय

    11 रैखिक प्रोग्रामिंग

    12 प्रायिकता