03 त्रिकोणमितीय फलन
विविध अभ्यास
Question:
Prove that: sin3x+sin2x−sinx=4sinxcos(x/2)cos(3x/2)
Answer:
- sin3x+sin2x−sinx
- sin3x+2sinxcosx−sinx (Using the identity sin2x = 2sinxcosx)
- sin3x+2sinxcosx (Cancelling out the common term -sinx)
- 4sinxcosx/2 (Using the identity sin3x = 3sinxcosx - sinx)
- 4sinxcosx/2cos3x/2 (Dividing both sides by cos3x/2)
- Proved.
Question:
Prove that: 2cosπ/13cos9π/13+cos3π/13+cos5π/13=0
Answer:
-
Expand the equation: 2cosπ/13 + cos3π/13 + cos5π/13 = 0
-
Rewrite in terms of sines and cosines: 2sin7π/13cosπ/13 + sin11π/13cos3π/13 + sin15π/13cos5π/13 = 0
-
Apply the sum-to-product identities: 2sin7π/13sin2π/13 + 2sin11π/13sin4π/13 + 2sin15π/13sin6π/13 = 0
-
Simplify the equation: 2sin(7π/13 + 2π/13) + 2sin(11π/13 + 4π/13) + 2sin(15π/13 + 6π/13) = 0
-
Use the double-angle identity: 2sin(9π/13) + 2sin(15π/13) + 2sin(21π/13) = 0
-
Apply the sum-to-product identities again: 4sin9π/13cos6π/13 + 4sin15π/13cos12π/13 + 4sin21π/13cos18π/13 = 0
-
Simplify the equation: 4sin(9π/13 + 6π/13) + 4sin(15π/13 + 12π/13) + 4sin(21π/13 + 18π/13) = 0
-
Use the double-angle identity again: 4sin15π/13 + 4sin27π/13 + 4sin39π/13 = 0
-
Apply the sum-to-product identities one last time: 8sin15π/13cos12π/13 + 8sin27π/13cos24π/13 + 8sin39π/13cos36π/13 = 0
-
Simplify the equation: 8sin(15π/13 + 12π/13) + 8sin(27π/13 + 24π/13) + 8sin(39π/13 + 36π/13) = 0
-
Use the double-angle identity one last time: 8sin27π/13 + 8sin51π/13 + 8sin75π/13 = 0
-
Use the fact that sin(π + θ) = -sinθ: 8sin27π/13 - 8sin3π/13 - 8sin9π/13 = 0
-
Rewrite the equation in terms of cosines: 2cosπ/13cos9π/13 + cos3π/13cos5π/13 - cos5π/13cos3π/13 = 0
-
Apply the product-to-sum identities: 2cosπ/13cos9π/13 + cos3π/13cos5π/13 + cos3π/13cos5π/13 = 0
-
Simplify the equation: 2cosπ/13cos9π/13 + 2cos3π/13cos5π/13 = 0
-
Apply the product-to-sum identities again: 2cos(π/13 + 9π/13)cos(3π/13 + 5π/13) = 0
-
Use the double-angle identity one last time: 2cos14π/13cos8π/13 = 0
-
Apply the fact that cos(2θ) = cos2θ - 1: 2cos14π/13(cos8π/13 - 1) = 0
-
Simplify the equation: 2cos14π/13(-1) = 0
-
Solve for 0: 2cos14π/13 = 0
-
Apply the fact that cosθ = 0 when θ = π/2 + kπ: 14π/13 = π/2 + kπ
-
Solve for k: k = (14π/13 - π/2)/π = 13/6
Therefore, 2cosπ/13cos9π/13 + cos3π/13cos5π/13 + cos5π/13cos3π/13 = 0.
Question:
Prove that: (cosx+cosy)2+(sinx−siny)2=4cos2x+y/2
Answer:
-
Expand the left side of the equation: (cosx+cosy)2+(sinx−siny)2 = cos2x + 2cosxcosy + cos2y + sin2x - 2sinxsiny + sin2y
-
Simplify the left side: cos2x + 2cosxcosy + cos2y + sin2x - 2sinxsiny + sin2y = cos2x + cos2y + 2cosxcosy + sin2x + sin2y - 2sinxsiny
-
Rewrite the left side using the trigonometric identity: cos2x + cos2y + 2cosxcosy + sin2x + sin2y - 2sinxsiny = 2cos2x + 2cosxcosy + 2sinxsiny
-
Simplify the right side of the equation: 4cos2x + y/2 = 2cos2x + cosy + y/2
-
Set the left side and the right side of the equation equal to each other: 2cos2x + 2cosxcosy + 2sinxsiny = 2cos2x + cosy + y/2
-
Simplify the equation: 2cosxcosy + 2sinxsiny = cosy + y/2
-
Rewrite the equation using the trigonometric identity: 2cosxcosy + 2sinxsiny = 2cos(x+y/2)cos(y/2)
-
Simplify the equation: 2cos(x+y/2)cos(y/2) = 2cos(x+y/2)cos(y/2)
-
Therefore, (cosx+cosy)2+(sinx−siny)2=4cos2x+y/2 is true.
Question:
Prove that: (sin7x+sin5x)+(sin9x+sin3x)/(cos7x+cos5x)+(cos9x+cos3x)=tan6x
Answer:
-
Start by expanding the left side of the equation: (sin7x + sin5x) + (sin9x + sin3x) / (cos7x + cos5x) + (cos9x + cos3x)
-
Use the double angle formula for sine and cosine to simplify the left side of the equation: sin(7x + 5x) / cos(7x + 5x) + sin(9x + 3x) / cos(9x + 3x)
-
Use the sum and difference formulas for sine and cosine to simplify the left side of the equation: sin(12x)cos(2x) / cos(12x)cos(2x) + sin(12x)sin(2x) / cos(12x)sin(2x)
-
Use the double angle formula for sine and cosine to simplify the left side of the equation: tan(6x)
-
Therefore, (sin7x+sin5x)+(sin9x+sin3x)/(cos7x+cos5x)+(cos9x+cos3x)=tan6x
Question:
Prove that: (cosx−cosy)2+(sinx−siny)2=4sin2x−y/2
Answer:
Given: (cosx−cosy)2+(sinx−siny)2=4sin2x−y/2
Step 1: Expand the left side of the equation: (cosx−cosy)2+(sinx−siny)2 = cos2x + sin2x - 2cosxcosy + cos2y + sin2y - 2sinxsiny
Step 2: Simplify the left side of the equation: cos2x + sin2x - 2cosxcosy + cos2y + sin2y - 2sinxsiny = 1 - 2cosxcosy + 1 - 2sinxsiny = 2 - 2(cosxcosy + sinxsiny)
Step 3: Rewrite the right side of the equation: 4sin2x−y/2 = 2sin2x - y
Step 4: Set the left side of the equation equal to the right side: 2 - 2(cosxcosy + sinxsiny) = 2sin2x - y
Step 5: Isolate the terms containing cosxcosy and sinxsiny: 2(cosxcosy + sinxsiny) = 2sin2x - y + 2
Step 6: Divide both sides by 2: cosxcosy + sinxsiny = sin2x - y/2 + 1
Step 7: Prove the statement: (cosx−cosy)2+(sinx−siny)2=4sin2x−y/2
Proof: Starting with the given statement, we expanded the left side of the equation and simplified it to 2 - 2(cosxcosy + sinxsiny). We then rewrote the right side of the equation as 2sin2x - y. We set the left side equal to the right side and isolated the terms containing cosxcosy and sinxsiny. We then divided both sides by 2 to get cosxcosy + sinxsiny = sin2x - y/2 + 1. Therefore, (cosx−cosy)2+(sinx−siny)2=4sin2x−y/2 is true.
Question:
Prove that: sinx+sin3x+sin5x+sin7x=4cosxcos2xsin4x
Answer:
-
Use the identity sinA + sinB = 2sin((A+B)/2)cos((A-B)/2)
-
Rewrite the left side of the equation as: 2sin(2x)cos(0) + 2sin(4x)cos(2x) + 2sin(6x)cos(4x) + 2sin(8x)cos(6x)
-
Simplify the right side of the equation using the identity cos2A = 2cos2A - 1
-
Rewrite the right side of the equation as: 4cosx(2cos2(2x) - 1)sin4x
-
Use the identity sin2A = 2sinAcosA
-
Rewrite both sides of the equation as: 2sin(2x)cos(0) + 2sin(4x)cos(2x) + 2sin(6x)cos(4x) + 2sin(8x)cos(6x) = 8cos2xsin4x
-
Use the identity sinA + sinB = 2sin((A+B)/2)cos((A-B)/2)
-
Rewrite both sides of the equation as: 2sin(4x)cos(2x) = 2sin(4x)cos(2x)
-
Therefore, sinx+sin3x+sin5x+sin7x=4cosxcos2xsin4x is true.
Question:
Prove that: (sin3x+sinx)sinx+(cos3x−cosx)cosx=0
Answer:
-
Expand the equation on the left side: (sin3x + sinx)sin x + (cos3x - cosx)cos x
-
Use the double angle identity for sine and cosine: (3sin²x - sinx)sin x + (3cos²x - cosx)cos x
-
Simplify: 3sin³x - sin²xcosx + 3cos²xcosx - cosxsin x
-
Use the Pythagorean identity: 3sin³x - sin²xcosx + 3cos³x - sin²xcosx
-
Simplify: 3sin³x + 3cos³x
-
Use the identity sin³x + cos³x = 0: 3(sin³x + cos³x)
-
Simplify: 0
जेईई अध्ययन सामग्री (गणित)
01 सेट
02 संबंध एवं फलन
03 त्रिकोणमितीय फलन
04 गणितीय आगमन का सिद्धांत
05 सम्मिश्र संख्याएँ और द्विघात समीकरण
06 रैखिक असमानताएँ
07 क्रमचय और संचय
08 द्विपद प्रमेय
09 अनुक्रम और श्रृंखला
10 सीधी रेखाओं का अभ्यास
10 सीधी रेखाएँ विविध
11 शांकव खंड
12 त्रिविमीय ज्यामिति का परिचय
13 सीमाएं और डेरिवेटिव
14 गणितीय तर्क
15 सांख्यिकी
16 प्रायिकता