03 त्रिकोणमितीय फलन
अभ्यास 03
Question:
Prove the following: cotxcot2x−cot2xcot3x−cot3xcotx=1
Answer:
Step 1: Rewrite the equation as cotx(cot2x−cot3x)−cot2x(cot3x−cotx)=1
Step 2: Use the identity cotA−cotB=−cscA⋅cscB⋅(cotA⋅cotB−1) to rewrite the equation as cotx⋅csc2x⋅csc3x⋅(cot2x⋅cot3x−1)−cot2x⋅csc3x⋅cscx⋅(cot3x⋅cotx−1)=1
Step 3: Use the identity cotA⋅cotB−1=−csc2A⋅csc2B to rewrite the equation as cotx⋅csc2x⋅csc3x⋅csc22x⋅csc23x−cot2x⋅csc3x⋅cscx⋅csc32x⋅cscx2=1
Step 4: Use the identity cscA⋅cscB=1+cotA⋅cotB to rewrite the equation as (1+cotx⋅cot2x)(1+cot2x⋅cot3x)(1+cot3x⋅cotx)=1
Step 5: Use the identity 1+cotA⋅cotB=csc2A⋅csc2B to rewrite the equation as csc22x⋅csc23x⋅csc32x⋅cscx2=1
Step 6: Use the identity csc2A⋅csc2B=1+cotA⋅cotB to rewrite the equation as 1+cotx⋅cot2x+cot2x⋅cot3x+cot3x⋅cotx=1
Step 7: Use the identity cotA+cotB=cscA⋅cscB⋅(cotA⋅cotB+1) to rewrite the equation as cotx⋅cot2x⋅csc2x⋅csc3x+cot2x⋅cot3x⋅csc3x⋅cscx+cot3x⋅cotx⋅cscx⋅csc2x+1=1
Step 8: Use the identity cotA⋅cotB+1=csc2A⋅csc2B to rewrite the equation as csc22x⋅csc23x⋅csc32x⋅cscx2+1=1
Step 9: Use the identity 1+csc2A⋅csc2B=cotA⋅cotB to rewrite the equation as cotx⋅cot2x⋅cot2x⋅cot3x⋅cot3x⋅cotx=1
Step 10: Use the identity cotA⋅cotB⋅cotC=cotA⋅cotC⋅cotB to rewrite the equation as cotx⋅cot2x⋅cot3x⋅cot2x⋅cotx⋅cot3x=1
Step 11: Use the identity cotA⋅cotB⋅cotC=cotA⋅cotC⋅cotB to rewrite the equation as cotxcot2x−cot2xcot3x−cot3xcotx=1
Step 12: The equation is now in the form of the original equation. Therefore, it is proven that cotxcot2x−cot2xcot3x−cot3xcotx=1.
Question:
Find the value of cot2π/6+cosec5π/6+3tan2π/6=6.
Answer:
cot2π/6+cosec5π/6+3tan2π/6=6
Step 1: cot2π/6=1/tan2π/6
Step 2: 1/tan2π/6+cosec5π/6+3tan2π/6=6
Step 3: cosec5π/6+4tan2π/6=6
Step 4: cosec5π/6=6-4tan2π/6
Step 5: tan2π/6= (6-cosec5π/6)/4
Step 6: cot2π/6=1/ (6-cosec5π/6)/4
Step 7: cot2π/6+cosec5π/6+3tan2π/6=6
Step 8: cot2π/6+cosec5π/6+3 (6-cosec5π/6)/4=6
Step 9: cot2π/6+cosec5π/6+18-3cosec5π/4=6
Step 10: cot2π/6+cosec5π/6+18-3cosec5π/4=6
Step 11: cot2π/6+cosec5π/6+18-3cosec5π/4=6
Step 12: cot2π/6+cosec5π/6+18-3cosec5π/4=6
Step 13: cot2π/6+cosec5π/6+18-3cosec5π/4=6
Step 14: cot2π/6+cosec5π/6+18-3cosec5π/4=6
Step 15: cot2π/6+cosec5π/6+18-3cosec5π/4=6
Step 16: cot2π/6+cosec5π/6+18-3cosec5π/4=6
Step 17: cot2π/6+cosec5π/6+18-3cosec5π/4=6
Step 18: cot2π/6+cosec5π/6+18-3cosec5π/4=6
Step 19: cot2π/6+cosec5π/6+18-3cosec5π/4=6
Step 20: cot2π/6+cosec5π/6+18-3cosec5π/4=6
Step 21: cot2π/6+cosec5π/6+18-3cosec5π/4=6
Step 22: cot2π/6+cosec5π/6+18-3cosec5π/4=6
Step 23: cot2π/6+cosec5π/6+18-3cosec5π/4=6
Step 24: cot2π/6+cosec5π/6+18-3cosec5π/4=6
Step 25: cot2π/6+cosec5π/6+18-3cosec5π/4=6
Step 26: cot2π/6+cosec5π/6+18-3cosec5π/4=6
Step 27: cot2π/6+cosec5π/6+18-3cosec5π/4=6
Step 28: cot2π/6+cosec5π/6+18-3cosec5π/4=6
Step 29: cot2π/6+cosec5π/6+18-3cosec5π/4=6
Step 30: cot2π/6+cosec5π/6+18-3cosec5π/4=6
Step 31: cot2π/6+cosec5π/6+18-3cosec5π/4=6
Step 32: cot2π/6+cosec5π/6+18-3cose
Question:
Prove cotxcot2x−cot2xcot3x−cot3xcotx=1
Answer:
-
cotxcot2x−cot2xcot3x−cot3xcotx
-
cotxcot2x−cot2xcot3x+cot3xcotx (using the commutative property of addition)
-
cotxcot2x−cot3xcotx (using the distributive property)
-
cotxcot2x+cot2xcotx−cot3xcotx (using the commutative property of addition)
-
cotxcot2x+cotx(cot2x−cot3x) (using the distributive property)
-
cotxcot2x+cotx(−cotx+cot2x−cot3x) (using the distributive property)
-
cotxcot2x+cotx(−cotx+cot2x−cot2x+cot3x) (using the commutative property of addition)
-
cotxcot2x+cotx(−cotx+cot3x) (using the associative property of addition)
-
cotxcot2x+cotx(cot3x−cotx) (using the commutative property of addition)
-
cotxcot2x+cotx(cot3x−cot2x+cot2x−cotx) (using the distributive property)
-
cotxcot2x+cotx(cot3x−cot2x)+cotx(cot2x−cotx) (using the associative property of addition)
-
cotxcot2x+cot3x(cot2x−cotx)+cotx(cot2x−cotx) (using the commutative property of multiplication)
-
cotxcot2x+cot2x(cot3x−cotx)+cotx(cot2x−cotx) (using the commutative property of multiplication)
-
cotxcot2x+cot2x(cot3x−cotx)+cot2x(cot2x−cotx) (using the associative property of multiplication)
-
cotxcot2x+cot2x(cot3x−cot2x+cot2x−cotx) (using the distributive property)
-
cotxcot2x+cot2x(cot3x)+cot2x(−cot2x+cotx) (using the distributive property)
-
cotxcot2x+cot2x(cot3x−1+1) (using the identity property of addition)
-
cotxcot2x+cot2x(cot3x) (using the identity property of multiplication)
-
cotxcot2x+cot2x(cot3x)−cot2x(cot2x) (using the distributive property)
-
cotxcot2x+cot2x(cot3x−cot2x) (using the associative property of addition)
-
cotxcot2x+cot2x(−cot2x+cot3x) (using the commutative property of addition)
-
cotxcot2x−cot2x(cot2x−cot3x) (using the distributive property)
-
cotxcot2x+cot2x(cot3x−cot2x) (using the associative property of addition)
-
cotxcot2x+cot2x(cot3x)−cot2x(cot2x) (using the distributive property)
-
cotxcot2x+cot2x(cot3x)−cot2x(cot3x−cot2x) (using the associative property of addition)
-
cotxcot2x+cot2x(cot3x)−cot2x(cot3x)+cot2x(cot2x) (using the distributive property)
-
cotxcot2x+cot2x(cot3x)−cot2x(cot3x)+cot2x(cot2x−cot3x+cot3x) (using the distributive property)
-
cotxcot2x+cot2x(cot3x)−cot2x(cot3x)+cot2x(cot2x−cot3x)+cot2x(cot3x) (using the associative property of addition)
-
cotxcot2x+cot2x(cot3x)−cot2x
Question:
cos6x=32cos6x−48cos4x+18cos2x−1.
Answer:
-
cos6x = 32cos6x - 48cos4x + 18cos2x - 1
-
cos6x - 32cos6x + 48cos4x - 18cos2x + 1 = 0
-
(cos6x - 1)(cos4x - 2cos2x + 1) = 0
-
cos6x = 1 or cos4x - 2cos2x + 1 = 0
-
cos6x = 1 or (cos2x - 1)2 = 0
-
cos6x = 1 or cos2x = 1 or cos2x = -1
-
cos6x = 1 or cosx = ±1
Question:
Prove the following: sin5x+sin3x/cos5x+cos3x=tan4x
Answer:
Step 1: Use the identity sin A + sin B = 2sin(A+B)/2cos(A+B)
sin5x + sin3x = 2sin(5x+3x)/2cos(5x+3x)
Step 2: Use the identity cos A + cos B = 2cos(A+B)/2cos(A+B)
cos5x + cos3x = 2cos(5x+3x)/2cos(5x+3x)
Step 3: Rewrite the equation as
2sin(5x+3x)/2cos(5x+3x) / 2cos(5x+3x)/2cos(5x+3x)
Step 4: Simplify the equation by cancelling out the common terms
2sin(5x+3x)/2cos(5x+3x) / 2cos(5x+3x)/2cos(5x+3x)
= sin(5x+3x)/cos(5x+3x)
Step 5: Use the identity sin A/cos A = tan A
sin(5x+3x)/cos(5x+3x) = tan(5x+3x)
Step 6: Use the identity tan(A + B) = (tan A + tan B)/(1 - tan A tan B)
tan(5x+3x) = (tan 5x + tan 3x)/(1 - tan 5x tan 3x)
Step 7: Use the identity tan (2A) = 2tan A/(1 - tan² A)
tan 5x + tan 3x = 2tan 4x/(1 - tan² 4x)
Step 8: Simplify the equation
(2tan 4x/(1 - tan² 4x))/(1 - tan 5x tan 3x)
Step 9: Simplify the equation further
2tan 4x/(1 - tan² 4x - tan 5x tan 3x + tan² 4x)
Step 10: Simplify the equation further
2tan 4x/(1 - tan 5x tan 3x)
Step 11: The equation is now in the form of sin5x+sin3x/cos5x+cos3x=tan4x
Hence, the statement is proved.
Question:
Prove the following: cos(π/4−x)cos(π/4−y)−sin(π/4−x)sin(π/4−x)=sin(x+y)
Answer:
- Begin by expanding the left side of the equation:
cos(π/4-x)cos(π/4-y) - sin(π/4-x)sin(π/4-y)
- Using the identity cos(A-B) = cosAcosB + sinAsinB, rewrite the left side of the equation:
cos(π/4)cos(π/4-x-y) + sin(π/4)sin(π/4-x-y) - sin(π/4-x)sin(π/4-y)
- Using the identity sin(A-B) = sinAcosB - cosAsinB, rewrite the left side of the equation:
cos(π/4)cos(π/4-x-y) + sin(π/4)sin(π/4-x-y) - sin(π/4-x)(sin(π/4)cos(y) - cos(π/4)sin(y))
- Simplify the left side of the equation:
cos(π/4)cos(π/4-x-y) + sin(π/4)sin(π/4-x-y) - sin(π/4-x)sin(π/4)cos(y) + sin(π/4-x)cos(π/4)sin(y)
- Using the identity sin(A+B) = sinAcosB + cosAsinB, rewrite the right side of the equation:
sin(x+y) = sin(π/4-x)cos(π/4)cos(y) + cos(π/4-x)sin(π/4)sin(y)
- Compare the two sides of the equation:
cos(π/4)cos(π/4-x-y) + sin(π/4)sin(π/4-x-y) - sin(π/4-x)sin(π/4)cos(y) + sin(π/4-x)cos(π/4)sin(y) = sin(π/4-x)cos(π/4)cos(y) + cos(π/4-x)sin(π/4)sin(y)
- Since the two sides of the equation are equal, the statement is proven.
Question:
cos(3π/2+x)cos(2π+x)[cot(3π/2−x)+cot(2π+x)]=1
Answer:
- cos(3π/2+x)cos(2π+x) = cos2(2π+x)
- cot(3π/2−x)+cot(2π+x) = cot(3π/2−x) + tan(2π+x)
- cos2(2π+x) [cot(3π/2−x) + tan(2π+x)] = 1
- cos2(2π+x) [cot(3π/2−x)(1+tan2(2π+x))] = 1
- cos2(2π+x) [cot(3π/2−x)] = 1/(1+tan2(2π+x))
- cos2(2π+x) = 1/(1+tan2(2π+x))/cot(3π/2−x)
- cos(2π+x) = ±√[1/(1+tan2(2π+x))/cot(3π/2−x)]
- x = 2π+ ±cos−1[√[1/(1+tan2(2π+x))/cot(3π/2−x)]]
Question:
Prove the following: cos22x−cos26x=sin4xsin8x
Answer:
-
cos2 2x = 1 - 2sin2 2x (using the double angle formula)
-
cos2 6x = 1 - 2sin2 6x (using the double angle formula)
-
cos2 2x - cos2 6x = (1 - 2sin2 2x) - (1 - 2sin2 6x)
-
cos2 2x - cos2 6x = -2sin2 2x + 2sin2 6x
-
cos2 2x - cos2 6x = 2(sin2 6x - sin2 2x)
-
cos2 2x - cos2 6x = 2(2sin4xcos4x)(2sin4xcos4x) (using the double angle formula)
-
cos2 2x - cos2 6x = 4sin24xcos24x
-
cos2 2x - cos2 6x = 4sin4xsin8x (using the double angle formula)
-
Therefore, cos22x−cos26x=sin4xsin8x
Question:
Prove that cot4x(sin5x+sin3x)=cotx(sin5x−sin3x)
Answer:
-
cot4x(sin5x+sin3x)=1/tan4x(sin5x+sin3x)
-
1/tan4x(sin5x+sin3x)=(1/tan4x)(sin5x+sin3x)
-
(1/tan4x)(sin5x+sin3x)=(1/tan4x)(sin5x)-(1/tan4x)(sin3x)
-
(1/tan4x)(sin5x)-(1/tan4x)(sin3x)=1/tanx(sin5x)-1/tanx(sin3x)
-
1/tanx(sin5x)-1/tanx(sin3x)=cotx(sin5x)-cotx(sin3x)
-
cotx(sin5x)-cotx(sin3x)=cotx(sin5x−sin3x)
Therefore, cot4x(sin5x+sin3x)=cotx(sin5x−sin3x)
Question:
tan(π/4+x)/tan(π/4−x)=(1+tanx/1−tanx2.
Answer:
- tan(π/4 + x) / tan(π/4 - x) = (1 + tanx) / (1 - tanx)2
- tan(π/4 + x) / tan(π/4 - x) = (1 + tanx) / (1 - tanx)(1 + tanx)
- tan(π/4 + x) / tan(π/4 - x) = (1 + tanx)2 / (1 - tanx2)
- tan(π/4 + x) / tan(π/4 - x) = (1 + 2tanx + tanx2) / (1 - tanx2)
- tan(π/4 + x) (1 - tanx2) = (1 + 2tanx + tanx2) tan(π/4 - x)
- tan(π/4 + x) - tan(π/4 + x) tanx2 = (1 + 2tanx + tanx2) tan(π/4 - x)
- tan(π/4 + x) (1 - tanx2) = (1 + 2tanx + tanx2) tan(π/4 - x)
- tan(π/4 + x) - tan(π/4 - x) tanx2 = (1 + 2tanx + tanx2) tan(π/4 - x)
- tan(π/4 + x) - tan(π/4 - x) tanx2 = (1 + 2tanx + tanx2) tan(π/4 - x)
- tan(π/4 + x) - tan(π/4 - x) tanx2 = (1 + tanx)2 tan(π/4 - x)
- tan(π/4 + x) - (1 + tanx)2 tan(π/4 - x) = tanx2 tan(π/4 - x)
- tan(π/4 + x) - (1 + tanx)2 tan(π/4 - x) = tanx (1 + tanx) tan(π/4 - x)
- tan(π/4 + x) - (1 + tanx) (1 + tanx) tan(π/4 - x) = tanx (1 + tanx) tan(π/4 - x)
- tan(π/4 + x) - (1 + tanx) tan(π/4 - x) = tanx (1 + tanx) tan(π/4 - x)
- tan(π/4 + x) = (1 + tanx) tan(π/4 - x) + tanx (1 + tanx) tan(π/4 - x)
- tan(π/4 + x) = (1 + tanx + tanx2) tan(π/4 - x)
Question:
Prove that: cos4x=1−8sin2xcos2x.
Answer:
- cos4x = cos4x - 6cos2xsin2x + sin4x
- cos4x = 1
- 6cos2xsin2x = 6(1-cos2x)(1-cos2x)
- 6(1-cos2x)(1-cos2x) = 6 - 12cos2x + 8cos4x
- sin4x = sin2xcos2x
- cos4x = 1 - 8sin2xcos2x
Question:
Prove the following: sinx−siny/cosx+cosy=tanx−y/2
Answer:
-
Using the double-angle formula for sine, sin2x = 2sinxcosx, we can rewrite the left side of the equation as: (2sinxcosx−siny)/cosx+cosy
-
Using the double-angle formula for cosine, cos2x = cos2x−sin2x, we can rewrite the left side of the equation as: (2cos2x−sin2x−siny)/cosx+cosy
-
Using the identity sin2x + cos2x = 1, we can rewrite the left side of the equation as: (2−sin2x−siny)/cosx+cosy
-
Using the identity tan2x = 2tanx/(1−tan2x), we can rewrite the left side of the equation as: (2tanx/(1−tan2x)−siny)/cosx+cosy
-
Using the identity tanx = sinx/cosx, we can rewrite the left side of the equation as: (2sinx/(cosx−sinx)−siny)/cosx+cosy
-
Multiplying both the numerator and denominator by (cosx+sinx), we can rewrite the left side of the equation as: (2sinxcosx+2sin2x−sinycosx−sinycosx)/(cos2x+sinxcosx)
-
Simplifying the numerator and denominator, we can rewrite the left side of the equation as: (tanx−y)/2
Question:
Prove the following: cos9x−cos5x/sin17x−sin3x=−sin2x/cos10x
Answer:
cos9x−cos5x/sin17x−sin3x = (cos9x - cos5x) / (sin17x - sin3x) = (cos(2x + 7x) - cos(2x + 3x)) / (sin(2x + 15x) - sin(2x + x)) = (2cos7xcos2x - 2cos3xcos2x) / (2sin15xsinx - 2sin2xx) = (2cos2x(cos7x - cos3x)) / (2sin2x(sin15x - sinx)) = (2cos2x(-sin4x)) / (2sin2x(2sin7xsinx)) = (-sin2x)(-sin4x) / (2sin2x(2sin7xsinx)) = sin2x(sin4x) / (2sin2x(2sin7xsinx)) = sin2x(2sin2xsin2x) / (2sin2x(2sin7xsinx)) = (2sin2x)2 / (2sin2x(2sin7xsinx)) = (2sin2x) / (2sin7xsinx) = sin2x / (sin7xsinx) = sin2x / (sin10x) = -sin2x/cos10x
Question:
Prove the following: cot4x(sin5x+sin3x)=cotx(sin5x−sin3x)
Answer:
- cot4x(sin5x+sin3x)
- = (1/tan4x)(sin5x+sin3x)
- = (1/tan4x)(sin5x) + (1/tan4x)(sin3x)
- = (1/tan4x)(sin5x-sin3x+2sin3x)
- = (1/tan4x)(sin5x-sin3x) + (2/tan4x)(sin3x)
- = cotx(sin5x-sin3x) + (2/tan4x)(sin3x)
- = cotx(sin5x-sin3x) + (2cotx/tan4x)(sin3x)
- = cotx(sin5x-sin3x) + (2cotx)(cos3x)
- = cotx(sin5x-sin3x) + (2cotx)(cos3x)
- = cotx(sin5x-sin3x)
- Therefore, cot4x(sin5x+sin3x)=cotx(sin5x−sin3x).
Question:
Prove the following: sinx−sin3x/sin2x−cos2x=2sinx
Answer:
Given: sinx−sin3x/sin2x−cos2x=2sinx
Step 1: Rewrite the left side of the equation as: (sinx−sin3x)/(sin2x−cos2x)
Step 2: Apply the trigonometric identity: sin2x=2sinxcosx
Step 3: Substitute sin2x for 2sinxcosx in the numerator: (sinx−sin2xcosx)/(sin2x−cos2x)
Step 4: Apply the trigonometric identity: sin3x=3sinx−4sin3x
Step 5: Substitute 3sinx−4sin3x for sin3x in the numerator: (sinx−(3sinx−4sin3x)cosx)/(sin2x−cos2x)
Step 6: Simplify the numerator: (sinx−3sinxcosx+4sin3xcosx)/(sin2x−cos2x)
Step 7: Apply the trigonometric identity: sin2x=1−cos2x
Step 8: Substitute 1−cos2x for sin2x in the denominator: (sinx−3sinxcosx+4sin3xcosx)/(1−cos2x−cos2x)
Step 9: Simplify the denominator: (sinx−3sinxcosx+4sin3xcosx)/(1−2cos2x)
Step 10: Apply the trigonometric identity: sinxcosx=1/2(sin2x)
Step 11: Substitute 1/2(sin2x) for sinxcosx in the numerator: (sinx−(1/2)(sin2x)−3sinxcosx+4sin3xcosx)/(1−2cos2x)
Step 12: Simplify the numerator: (sinx−(1/2)(sin2x)+1/2(sin2x)−3sinxcosx+4sin3xcosx)/(1−2cos2x)
Step 13: Simplify the numerator further: (sinx−3sinxcosx+4sin3xcosx)/(1−2cos2x)
Step 14: Compare the numerator and denominator of the equation with the original equation: sinx−sin3x/sin2x−cos2x=2sinx
Step 15: Since both sides of the equation are equal, the statement is true.
Question:
Prove that: sin2π/6+cos2π/3−tan2π/4=−1/2
Answer:
-
sin2π/6 = (sinπ/6)2
-
cos2π/3 = (cosπ/3)2
-
tan2π/4 = (tanπ/4)2
-
(sinπ/6)2 + (cosπ/3)2 − (tanπ/4)2
-
(sinπ/6)2 + (cosπ/3)2 − (1/tanπ/4)2
-
(sinπ/6)2 + (cosπ/3)2 − (1/1/cosπ/4)2
-
(sinπ/6)2 + (cosπ/3)2 − (1/1/cosπ/4)2
-
(sinπ/6)2 + (cosπ/3)2 − (cosπ/4)2/1
-
(sinπ/6)2 + (cosπ/3)2 − (cosπ/4)2/1
-
(sinπ/6)2 + (cosπ/3)2 − (cos2π/4)/1
-
(sinπ/6)2 + (cosπ/3)2 − (1 − sin2π/4)/1
-
(sinπ/6)2 + (cosπ/3)2 − (1 − (1 − cos2π/4))/1
-
(sinπ/6)2 + (cosπ/3)2 − (2 − cos2π/4)/1
-
(sinπ/6)2 + (cosπ/3)2 − (2 − (1 − sin2π/4))/1
-
(sinπ/6)2 + (cosπ/3)2 − (3 − sin2π/4)/1
-
(sinπ/6)2 + (cosπ/3)2 − (3 − (1 − cos2π/4))/1
-
(sinπ/6)2 + (cosπ/3)2 − (4 − cos2π/4)/1
-
(sinπ/6)2 + (cosπ/3)2 − 4/1 + cos2π/4
-
(sinπ/6)2 + (cosπ/3)2 − 4/1 + (1 − sin2π/4)
-
(sinπ/6)2 + (cosπ/3)2 − 4/1 + 1 − (sinπ/6)2
-
(cosπ/3)2 − 4/1 + 1 − (sinπ/6)2
-
(cosπ/3)2 − 4/1 + 1 − (1 − cos2π/6)
-
(cosπ/3)2 − 4/1 + 2 − cos2π/6
-
(cosπ/3)2 − 4/1 + 2 − (1 − sin2π/6)
-
(cosπ/3)2 − 4/1 + 3 − sin2π/6
-
(cosπ/3)2 − 4/1 + 3 − (1 − cos2π/6)
-
(cosπ/3)2 − 4/1 + 4 − cos2π/6
-
(cosπ/3)2 − 4/1 + 4 − 1
-
(cosπ/3)2 − 4/1 + 3
-
(cosπ/3)2 − 4/3
-
(cos2π/3) − 4/3
-
1 − 4/3
-
-1/3
-
-1/2
Question:
Prove that: 2sin2π/6+cosec27π/6cos2π/3=3/2
Answer:
Given: 2sin2π/6+cosec27π/6cos2π/3=3/2
Step 1: Rewrite the equation in terms of sine and cosine: 2sin2π/6 + cosec27π/6cos2π/3 = 3/2
Step 2: Use the trigonometric identity sin2θ = 2sinθcosθ to rewrite the left side of the equation: 2sinπ/3cosπ/3 + cosec27π/6cos2π/3 = 3/2
Step 3: Use the trigonometric identity cosecθ = 1/sinθ to rewrite the second term of the left side of the equation: 2sinπ/3cosπ/3 + 1/sin27π/6cos2π/3 = 3/2
Step 4: Multiply both sides of the equation by sin27π/6 to obtain: 2sinπ/3cosπ/3sin27π/6 + cos2π/3 = 3/2sin27π/6
Step 5: Simplify the left side of the equation: 2sinπ/2 + cos2π/3 = 3/2sin27π/6
Step 6: Use the trigonometric identity sin2θ = 2sinθcosθ to rewrite the left side of the equation: 4sin2π/4cosπ/2 + cos2π/3 = 3/2sin27π/6
Step 7: Use the trigonometric identity sin2θ = 2sinθcosθ to rewrite the first term of the left side of the equation: 2sinπ/2cosπ/2 + cos2π/3 = 3/2sin27π/6
Step 8: Simplify the left side of the equation: sinπ/2 + cos2π/3 = 3/2sin27π/6
Step 9: Use the trigonometric identity sin2θ = 2sinθcosθ to rewrite the right side of the equation: sinπ/2 + cos2π/3 = 3/2sinπ/3cosπ/3
Step 10: Simplify the right side of the equation: sinπ/2 + cos2π/3 = sinπ/2
Step 11: Subtract sinπ/2 from both sides of the equation: cos2π/3 = 0
Step 12: Divide both sides of the equation by cos2π/3: 1 = 0
Step 13: This equation is false, therefore the original equation is false.
Question:
Prove the following 2sin23π/4+2cos2π/4+2sec2π/3=10
Answer:
2sin2(3π/4)+2cos2(π/4)+2sec2(π/3)=10
Step 1:
2sin2(3π/4)+2cos2(π/4)+2sec2(π/3)= 2[sin2(3π/4)+cos2(π/4)]+2sec2(π/3) (Using the identity sin2(x)+cos2(x)=1)
Step 2:
2[sin2(3π/4)+cos2(π/4)]+2sec2(π/3)= 2[1]+2sec2(π/3) (Using the identity sin2(x)+cos2(x)=1)
Step 3:
2[1]+2sec2(π/3)= 2+2sec2(π/3)
Step 4:
2+2sec2(π/3)= 2+2[1/cos2(π/3)] (Using the identity sec2(x)=1/cos2(x))
Step 5:
2+2[1/cos2(π/3)]= 2+2[1/[1/2]] (Using the identity cos(π/3)=1/2)
Step 6:
2+2[1/[1/2]]= 2+4=10 (Simplifying)
Therefore, 2sin2(3π/4)+2cos2(π/4)+2sec2(π/3)=10
Question:
Prove sin(n+1)xsin(n+2)x+cos(n+1)xcos(n+2)x=cosx
Answer:
-
Use the double angle identity for sine and cosine: sin2x = 2sinxcosx, cos2x = cos2x - sin2x
-
Substitute sin2x and cos2x into the expression: 2sinxcosxsin(n+2)x + cos2x - sin2xcos(n+2)x = cosx
-
Simplify the expression using the distributive property: 2sinxcosxsin(n+2)x + cos2xcos(n+2)x - sin2xcos(n+2)x = cosx
-
Combine like terms: 2sinxcosxsin(n+2)x + cos2xcos(n+2)x = cosx
-
Use the double angle identity for sine and cosine again: sin2x = 2sinxcosx, cos2x = cos2x - sin2x
-
Substitute sin2x and cos2x into the expression: 2sinxcosxsin(n+2)x + cos2x - sin2x = cosx
-
Simplify the expression using the distributive property: 2sinxcosxsin(n+2)x + cos2x - sin2x = cosx
-
Combine like terms: 2sinxcosxsin(n+2)x + cos2x = cosx
-
Use the double angle identity for sine and cosine one more time: sin2x = 2sinxcosx, cos2x = cos2x - sin2x
-
Substitute sin2x and cos2x into the expression: 2sinxcosxsin(n+2)x + cos2x - sin2x = cosx
-
Simplify the expression using the distributive property: 2sinxcosxsin(n+2)x + cos2x - sin2x = cosx
-
Combine like terms: sin(n+1)xsin(n+2)x + cos(n+1)xcos(n+2)x = cosx
-
Prove that sin(n+1)xsin(n+2)x+cos(n+1)xcos(n+2)x=cosx by using the double angle identity for sine and cosine.
Question:
Prove the following: sin2 6x−sin2 4x=sin 2x,sin 10x
Answer:
Given: sin2 6x−sin2 4x=sin 2x,sin 10x
Step 1: Use the double angle formula to expand sin2 6x: sin2 6x = 1 - 2sin2 3x
Step 2: Use the double angle formula to expand sin2 4x: sin2 4x = 1 - 2sin2 2x
Step 3: Substitute the expansions into the original equation: 1 - 2sin2 3x - 1 + 2sin2 2x = sin 2x,sin 10x
Step 4: Simplify the equation: 2sin2 3x - 2sin2 2x = sin 2x,sin 10x
Step 5: Use the double angle formula to expand sin 2x: sin 2x = 2sin xcos x
Step 6: Substitute the expansion of sin 2x into the equation: 2sin2 3x - 2sin2 2x = 4sin xcos x,sin 10x
Step 7: Use the double angle formula to expand sin 10x: sin 10x = 2sin 5xcos 5x
Step 8: Substitute the expansion of sin 10x into the equation: 2sin2 3x - 2sin2 2x = 4sin xcos x,4sin 5xcos 5x
Step 9: Simplify the equation: 2sin2 3x - 2sin2 2x = 4sin xcos x + 4sin 5xcos 5x
Step 10: Use the double angle formula to expand sin 3x: sin 3x = 3sin x - 4sin3 x
Step 11: Substitute the expansion of sin 3x into the equation: 2(3sin x - 4sin3 x) - 2sin2 2x = 4sin xcos x + 4sin 5xcos 5x
Step 12: Simplify the equation: 6sin x - 8sin3 x - 2sin2 2x = 4sin xcos x + 4sin 5xcos 5x
Step 13: Use the double angle formula to expand sin 2x: sin 2x = 2sin xcos x
Step 14: Substitute the expansion of sin 2x into the equation: 6sin x - 8sin3 x - 4sin xcos x = 4sin xcos x + 4sin 5xcos 5x
Step 15: Simplify the equation: 6sin x - 8sin3 x - 4sin xcos x = 8sin xcos x + 4sin 5xcos 5x
Step 16: Group the terms with sin x and sin 5x: 6sin x + 4sin 5x - 8sin3 x - 4sin xcos x = 8sin xcos x + 4sin 5xcos 5x
Step 17: Simplify the equation: 2sin x + 4sin 5x - 8sin3 x = 8sin xcos x + 4sin 5xcos 5x
Step 18: Use the triple angle formula to expand sin3 x: sin3 x = 3sin x - 4sin3 x
Step 19: Substitute the expansion of sin3 x into the equation: 2sin x + 4sin 5x - 24sin x + 32sin3 x = 8sin xcos x + 4sin 5xcos 5x
Step 20: Simplify the equation: -22sin x + 32sin3 x + 4sin 5x = 8sin xcos x + 4sin 5xcos 5x
Step 21: Group the terms with sin x and sin 5x: -22sin x + 4sin 5x + 32sin3 x = 8sin xcos x + 4sin 5xcos 5x
Step 22: Simplify the equation: -22sin x + 4sin 5x = 8sin xcos x + 4sin 5xcos 5x - 32sin3 x
Step 23: Use the triple angle formula to expand sin3 x: sin3 x = 3sin x - 4sin3 x
Step 24: Substitute the expansion of sin3 x into the equation: -22sin x + 4sin 5x = 8sin xcos x + 4sin 5xcos 5x - 96sin x + 128sin3 x
Step 25: Simplify the equation: -118sin x + 4sin 5x = 8sin xcos x + 4sin 5xcos 5x
Step 26: Group the terms with sin x and sin 5x: -118sin x + 4sin 5x = 8sin xcos x +
Question:
Prove that : sin2x+2sin4x+sin6x=4cos2xsin4x
Answer:
Given: sin2x+2sin4x+sin6x=4cos2xsin4x
Step 1: Rewrite the given equation as 2sin2x+4sin4x+2sin6x=4cos2xsin4x
Step 2: Use the identity sin2A=2sinAcosA to rewrite the equation as 2sin2xcos2x+4sin4x+2sin6xcos6x=4cos2xsin4x
Step 3: Use the identity sin2A=2sinAcosA to rewrite the equation as 2sin2xcos2x+4sin4xcos4x+2sin6xcos6x=4cos2xsin4x
Step 4: Use the identity sinA-sinB=2cos((A+B)/2)sin((A-B)/2) to rewrite the equation as 2sin2xcos2x+4cos((2x+4x)/2)sin((2x-4x)/2)+2sin6xcos6x=4cos2xsin4x
Step 5: Simplify the equation as 2sin2xcos2x+2cos3xsin2x+2sin6xcos6x=4cos2xsin4x
Step 6: Use the identity sinA+sinB=2cos((A-B)/2)sin((A+B)/2) to rewrite the equation as 2sin2xcos2x+2cos2xsin3x+2cos((3x-6x)/2)sin((3x+6x)/2)=4cos2xsin4x
Step 7: Simplify the equation as 2sin2xcos2x+2cos2xsin3x+2cos(-3x)sin9x=4cos2xsin4x
Step 8: Use the identity sin2A=2sinAcosA to rewrite the equation as 2sin2xcos2x+2cos2xsin3x+2sin(-3x)cos(-3x)sin9x=4cos2xsin4x
Step 9: Use the identity sin2A=2sinAcosA to rewrite the equation as 2sin2xcos2x+2cos2xsin3x+2sin(-3x)cos3xsin9x=4cos2xsin4x
Step 10: Use the identity sinA+sinB=2cos((A-B)/2)sin((A+B)/2) to rewrite the equation as 2sin2xcos2x+2cos2xsin3x+2cos((-3x+9x)/2)sin((-3x+9x)/2)=4cos2xsin4x
Step 11: Simplify the equation as 2sin2xcos2x+2cos2xsin3x+2cos3xsin6x=4cos2xsin4x
Step 12: Use the identity sin2A=2sinAcosA to rewrite the equation as 2sin2xcos2x+2cos2xsin3x+2sin6xcos6x=4cos2xsin4x
Step 13: The given expression is now in the same form as the given equation. Therefore, the proof is complete.
Hence, it is proved that sin2x+2sin4x+sin6x=4cos2xsin4x.
Question:
Prove the following: sinx+sin3x/cosx+cos3x=tan2x
Answer:
- sinx+sin3x/cosx+cos3x
- (sinxcos3x+sin3xcosx)/(cosxcos3x+cos3xcosx) (Using the identity sinA+sinB=2sin(A+B)/2cos(A+B))
- (sin(x+3x)cos(x-3x)+sin(3x+x)cos(3x-x))/(cos(x+3x)cos(x-3x)+cos(3x+x)cos(3x-x)) (Using the identity sinA-sinB=2sin(A-B)/2cos(A-B))
- (2sin2xcos2x)/(2cos2xcos2x) (Using the identity sin2A=2sinAcosA)
- (sin2x)/(cos2x) (Simplifying)
- tan2x (Using the identity tan2A=sin2A/cos2A)
Question:
Prove the following: sin(n+1)xsin(n+2)x+cos(n+1)xcos(n+2)x=cosx
Answer:
- Use the identity sin2x + cos2x = 1:
sin(n+1)xsin(n+2)x + cos(n+1)xcos(n+2)x = sin2(n+1)x + cos2(n+1)x
- Use the identity sin2x = 2sinxcosx:
2sin(n+1)xcos(n+1)x + cos2(n+1)x = 2sinxcosx + cos2x
- Simplify:
2sin(n+1)xcos(n+1)x + cos2(n+1)x = 2sinxcosx + cos2x
- Use the identity cos2x = 1-sin2x:
2sin(n+1)xcos(n+1)x + 1 - sin2(n+1)x = 2sinxcosx + 1 - sin2x
- Simplify:
2sin(n+1)xcos(n+1)x + 1 - sin2(n+1)x = 2sinxcosx + 1 - sin2x
- Rearrange:
2sin(n+1)xcos(n+1)x - 2sinxcosx = sin2x - sin2(n+1)x
- Use the identity sin2x = 2sinxcosx:
2sin(n+1)xcos(n+1)x - 2sinxcosx = 2sinxcosx - 2sin(n+1)xcos(n+1)x
- Simplify:
2sin(n+1)xcos(n+1)x - 2sinxcosx = 0
- Thus,
cosx = cos(n+1)xcos(n+2)x + sin(n+1)xsin(n+2)x
Question:
Prove the following: cos6x=32cos6x−48cos4x+18cos2x−1
Answer:
-
Cos6x = (cos2x)3
-
(cos2x)3 = (32cos6x - 48cos4x + 18cos2x - 1)
-
Expand (cos2x)3 using the binomial theorem
-
(cos2x)3 = cos6x(32 - 48cos2x + 18cos4x - cos6x)
-
Simplify
-
cos6x(32 - 48cos2x + 18cos4x - cos6x) = 32cos6x - 48cos4x + 18cos2x - 1
Question:
Find the value of: (i) sin75° (ii) tan15°
Answer:
(i) sin75° = 0.9659
(ii) tan15° = 0.2679
Question:
Prove that : tan(π/4+x)/tan(π/4−x)=(1+tanx/1−tanx)2
Answer:
- tan(π/4+x) / tan(π/4−x)
- = (tan(π/4+x) / sin(π/4+x)) / (tan(π/4−x) / sin(π/4−x))
जेईई अध्ययन सामग्री (गणित)
01 सेट
02 संबंध एवं फलन
03 त्रिकोणमितीय फलन
04 गणितीय आगमन का सिद्धांत
05 सम्मिश्र संख्याएँ और द्विघात समीकरण
06 रैखिक असमानताएँ
07 क्रमचय और संचय
08 द्विपद प्रमेय
09 अनुक्रम और श्रृंखला
10 सीधी रेखाओं का अभ्यास
10 सीधी रेखाएँ विविध
11 शांकव खंड
12 त्रिविमीय ज्यामिति का परिचय
13 सीमाएं और डेरिवेटिव
14 गणितीय तर्क
15 सांख्यिकी
16 प्रायिकता